Skip to main content

Natural Remedies in the Fight Against Insects

  • Chapter
  • First Online:

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 1))

Abstract

With the discovery and large-scale use of synthetic insecticides in the 1940s and 1950s, the control of insects was mainly based on chemicals until the publication of the book “Silent Spring” by Rachel Carson. This new “green” movement was the driving force to search for new environmental compatible tools in the fight against pest and vector insects. There are many bacteria known which are causing insect diseases and used in insect control programs. Typical for these bacteria is the production of protein crystals the so-called δ-endotoxins which are produced by the bacilli during sporulation. Two groups of bacteria are of importance: a) Bacillus thuringiensis (B.t.) and B. sphaericus. B.t. products are most widely used in insect control programs. Thousands of B.t. isolates are known which are grouped into three major pathotypes: Pathotype A: lepidopteran specific Bacillus thuringiensis strains such as B.t. H-3a/3b (B. t. kurstaki); Pathotype B: nematoceran specific strains such as B.t. H-14. (B. t. israelensis), which kill especially mosquito and blackfly larvae and some members of the suborder nematocera; Pathotype C: coleopteran specific strain B.t. H-8a/8b (B. t. tenebrionis). The use of insect-specific toxins from Bacillus thuringiensis and B. sphaericus is forming an increasingly component of biological control strategies against nuisance, pest or vector species. The discovery of these microbial control agents marked the breakthrough in biological control, because of the special abilities of these microbial agents. Their protein crystals are highly toxic to target organisms and extremely environmentally safe. In Germany for instance, over 1,000 km2 of breeding sites have been treated with Bacillus thuringiensis israelensis and B. sphaericus resulting in a reduction of mosquito population year by year more by than 90% and without evidence of any harmful impact on the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alam KA, Khan SA, Seheli K, Huda N, Wadud A, Reza SH, Ali E, Mandal C, Salam A (2008) Mosquitocidal activity of Bti Producing Cry Protein against Aedes aegypti mosquito. Res J Environ Sci 2:46–51

    Article  CAS  Google Scholar 

  • Aly C (1985) Germination of Bacillus thuringiensis var. israelensis spores in the gut of Aedes larvae (Diptera: Culicidae). J Invertebr Pathol 45:1–8

    Article  PubMed  CAS  Google Scholar 

  • Aregawi M, Williams R, Dye C, Cibulskis R, Otten M (2008) World Malaria Report 2008. WHO, Geneva, p 118

    Google Scholar 

  • Baumann PM, Clark A, Baumann L, Broadwell AH (1991) Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol Rev 55:425–436

    PubMed  CAS  Google Scholar 

  • Becker N (2003) Ice granules containing endotoxins of microbial control agents for the control of mosquito larvae: a new application technique. J Am Mosq Control Assoc 19:63–66

    PubMed  Google Scholar 

  • Becker N, Margalit J (1993) Control of Dipteran pests by Bacillus thuringiensis in:Bacillus thuringiensis: its uses and future as a biological insecticide. Wiley, Sussex, England

    Google Scholar 

  • Becker N, Rettich F (1994) Protocol for the introduction of new Bacillus thuringiensis israelensis products into the routine mosquito control program in Germany. J Am Mosq Control Assoc 10(4):527–533

    PubMed  CAS  Google Scholar 

  • Becker N, Djakaria S, Kaiser A, Zulhasril O, Ludwig HW (1991) Efficacy of a new tablet formulation of an asporogenous strain of Bacillus thuringiensis israelensis against larvae of Aedes aegypti. Bull Soc Vector Ecol 16(1):176–182

    Google Scholar 

  • Becker N, Zgomba M, Ludwig M, Petric D, Rettich F (1992) Factors influencing the activity of Bacillus thuringiensis var. israelensis treatments. J Am Mosq Control Assoc 8(3):285–289

    PubMed  CAS  Google Scholar 

  • Becker N, Ludwig M, Beck M, Zgomba M (1993) The impact of environmental factors on the efficacy of Bacillus sphaericus against Culex pipiens. Bull Soc Vector Ecol 18(1):61–66

    Google Scholar 

  • Becker N, Zgomba M, Petric D, Beck M, Ludwig M (1995) Role of larval cadavers in recycling processes of Bacillus sphaericus. J Am Mosq Control Assoc 11(3):329–334

    PubMed  CAS  Google Scholar 

  • Becker N, Petrić D, Zgomba M, Boase C, Dahl C, Lane J, Kaiser A (2003) Mosquitoes and their control. Kluwer Academic/Plenum, New York, p 498

    Google Scholar 

  • Becker N, Petrić D, Zgomba M, Boase C, Madon M, Dahl C, Kaiser A (2010) Mosquitoes and their control. Springer, Heidelberg, p 577

    Book  Google Scholar 

  • Beltrao HM, Silva-Filha MH (2007) Interaction of Bacillus thuringiensis var. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. FEMS Microbiol Lett 266(2):163–169

    Article  CAS  Google Scholar 

  • Berliner E (1915) Über die Schlaffsucht der Mehlmottenraupen (Ephestia kühniella Zell.) und ihren Erreger Bacillus thuringiensis n. sp. Zeitschrift für Angewandte Entomologie, 2(1):29–56

    Google Scholar 

  • Berry C, Hindley J, Oei C (1991) The Bacillus sphaericus toxins and their potential for biotechnological development. In: Maramorosch K (ed) Biotechnology for biological control of pests and vectors. CRC, Boca Raton, FL, pp 35–51

    Google Scholar 

  • Boisvert M (2005) Utilization of Bacillus thuringiensis var. israelensis (Bti)-based formulations for the biological control of mosquitoes in Canada. In: 6th Pacific Rim Conference on the biotechnology of Bacillus thuringiensis and its environmental impact, Victoria BC, pp 87–93

    Google Scholar 

  • Boisvert M, Boisvert J (2000) Effects of Bacillus thuringiensis var. israelensis on target and non-target organisms: a review of laboratory and field experiments. Biocontrol Sci Tech 10:517–561

    Article  Google Scholar 

  • Bourgouin C, Klier A, Rapoport G (1986) Characterization of the genes encoding the haemolytic toxin and the mosquitocidal delta-endotoxin of Bacillus thuringiensis israelensis. Mol Gen Genet 205:390–397

    Article  PubMed  CAS  Google Scholar 

  • Broadwell AH, Baumann L, Baumann P (1990) Larvicidal properties of the 42 and 51 kilodalton Bacillus sphaericus proteins expressed in different bacterial hosts:Evidence for a binary toxin. Curr Microbiol 21:361–366

    Article  CAS  Google Scholar 

  • Chang C, Yu YM, Dai SM, Law SK, Gill SS (1993) High-level cryIVD and cytA gene expression in Bacillus thuringiensis does not require the 20 kilodalton protein and the coexpressed gene products are synergistic in their toxicity of mosquitoes. Appl Environ Microbiol 59:815–821

    PubMed  CAS  Google Scholar 

  • Charles JF, Nielsen-LeRoux C (1996) Les bacteries entomopathogenes:mode d’action sur les larves de moustiques et phenomenes de resistance. Ann Inst Pasteur Actualites 7(4):233–245

    Article  Google Scholar 

  • Charles JF, Nielsen-LeRoux C (2000) Mosquitocidal bacterial toxins:diversity, mode of action and resistance phenomena. Mem Inst Oswaldo Cruz 95:201–206

    Article  PubMed  CAS  Google Scholar 

  • Charles JF, Nielsen-LeRoux C, Delécluse A (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu Rev Entomol 41:451–472

    Article  PubMed  CAS  Google Scholar 

  • Chilcott CN, Ellar DJ (1988) Comparative toxicity of Bacillus thuringiensis var. israelensis crystal proteins in vivo and in vitro. J Gen Microbiol 134:2551–2558

    PubMed  CAS  Google Scholar 

  • Davidson EW (1988) Binding of the Bacillus sphaericus toxin to midgut cells of mosquito larvae: relationship to host range. J Med Entomol 25:151–157

    PubMed  CAS  Google Scholar 

  • Davidson EW (1990) Development of insect resistance to biopesticides. In: Proceedings of second symposium on biocontrol, Brasilia, pp 19

    Google Scholar 

  • Davidson EW, Becker N (1996) Microbial control of vectors. In: Beaty BJ, Marquardt WC (eds) The biology of disease vectors. University Press of Colorado, Colorado, pp 549–563

    Google Scholar 

  • Davidson EW, Yousten AA (1990) The mosquito larval toxin of Bacillus sphaericus. In: de Barjac H, Sutherland D (eds) Bacterial control of mosquitoes and black flies: biochemistry, genetics and applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. Rutgers University Press, New Brunswick, NJ, pp 237–255

    Google Scholar 

  • Delecluse A, Barloy F, Rosso ML (1996) Les bacteries pathogenes des larves de dipteres: structure et specificite des toxines. Ann Inst Pasteur Actualites 7(4):217–231

    Google Scholar 

  • Des Rochers B, Garcia R (1984) Evidence for persistence and recycling of Bacillus sphaericus. Mosq. News 44:160–165

    Google Scholar 

  • Etang J, Chandre F, Guillet P, Manga L (2004) Reduced bio-efficacy of permethrin EC impregnated bednets against an Anopheles gambiae strain with oxidase-based pyrethroid tolerance. Malar J 3:46–46

    Article  PubMed  Google Scholar 

  • Federici BA, Lüthy P, Ibarra JE (1990) Parasporal body of Bacillus thuringiensis israelensis: structure, protein composition, and toxicity. In: de Barjac H, Sutherland D (eds) Bacterial control of mosquitoes and blackflies: biochemistry, genetics and applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. Rutgers University Press, New Brunswick, NJ, pp 45–65

    Google Scholar 

  • Fillinger U, Lindsay SW (2006) Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop Med Int Health 11:1629

    Google Scholar 

  • Fillinger U, Knols BGJ, Becker N (2003) Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against afrotropical anophelines in western Kenya. Trop Med Int Health 8(1):37–47

    Article  PubMed  Google Scholar 

  • Fillinger U, Kannady K, William G, Vanek MJ, Dongus S, Nyika D, Geissbuehler Y, Chaki PP, Govella NJ, Mathenge EM, Singer BH, Mshinda H, Lindsay SW, Tanner M, Mtasiwa D, de Castro MC, Killeen GF (2008) A tool box for operational mosquito larval control: preliminary results and early lessons from the Urban Malaria Control Programme in Dar es Salaam. Tanz Malariol J 7:20

    Google Scholar 

  • Garcia R, Des Rochers B, Tozer W (1981) Studies on Bacillus thuringiensis var. israelensis against mosquito larvae and other organisms. Proc Calif Mosq Vector Control Assoc 49:25–29

    Google Scholar 

  • Georghiou GP, Wirth M (1997) The influence of single vs multiple toxins of Bacillus thuringiensis subsp. israelensis on the development of resistance in Culex quinquefasciatus (Diptera: Culicidae). Appl Environ Microbiol 63(3–4):1095–1101

    PubMed  CAS  Google Scholar 

  • Goldberg LH, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergenti, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq News 37:355–358

    Google Scholar 

  • Hertlein BC, Levy R, Miller TW Jr (1979) Recycling potential and selective retrieval of Bacillus sphaericus from soil in a mosquito habitat. J Invertebr Pathol 33:217–221

    Article  Google Scholar 

  • Hirsch HD, Becker N (2009) Cost-benefit analysis of mosquito control operations based on microbial control agents in the Upper Rhine Valley (Germany). Eur Mosq Bull 27:47–55

    Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  Google Scholar 

  • Ibarra JE, Federici BA (1986) Isolation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp. israelensis. J Bacteriol 165(2):527–533

    PubMed  CAS  Google Scholar 

  • Kahindi SC, Midega JT, Mwangangi JM, Kibe LW, Nzovu J, Luethy P, Githure J, Mbogo C (2008) Efficacy of vectobac DT and culinexcombi against mosquito larvae in unused swimming pools in malindi, Kenya. J Am Mosq Control Assoc 24:538–542

    Article  PubMed  Google Scholar 

  • Kellen WR, Meyers CM (1964) Bacillus sphaericus Neide as a pathogen of mosquitoes. J Invert Pathol 7:442–448

    Article  Google Scholar 

  • Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BGJ (2002a) Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis 2:618–627

    Article  PubMed  Google Scholar 

  • Killeen GF, Fillinger U, Knols BGJ (2002b) Advantages of larval control for African malaria vectors: low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malariol J 1:1–7

    Article  Google Scholar 

  • Krieg A (1986) Bacillus thuringiensis, ein mikrobielles Insektizid. Acta Phytomed 10:191

    Google Scholar 

  • Kroeger A, Dehlinger U, Burkhardt G, Anaya H, Becker N (1995) Community based dengue control in Columbia:people’s knowledge and practice and the potential contribution of the biological larvicide B. thuringiensis israelensis (Bacillus thuringiensis israelensis). Trop Med Parasitol 46:241–246

    PubMed  CAS  Google Scholar 

  • Lacey LA (1990) Persistence and formulation of Bacillus sphaericus. In: de Barjac H, Sutherland D (eds) Bacterial control of mosquitoes and blackflies: biochemistry, genetics and applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. Rutgers University Press, New Brunswick, NJ, pp 284–294

    Google Scholar 

  • Langenbruch GA, Hommel B, Becker N (2005) Bakterienpräparate. In: H. Schmutterer, Huber J (eds) Natürliche Schädlingsbekämpfungsmittel. Eugen Ulmer GmbH, Stuttgart, pp 29–86

    Google Scholar 

  • Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal delta- endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353:815–821

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M, Beck M, Zgomba M, Becker N (1994) The impact of water quality on the persistance of Bacillus sphaericus. Bull Soc Vector Ecol 19(1):43–48

    Google Scholar 

  • Lüthy P, Wolfersberger MG (2000) Pathogenesis of Bacillus thuringiensis toxins. In: Entopathogenic bacteria form laboratory to field application. Kluwer Academic, Dordrecht, Boston, London, pp 524

    Google Scholar 

  • Mahilum MM, Ludwig M, Madon MB, Becker N (2005) Evaluation of the present dengue situation and control strategies against Aedes aegypti in Cebu City, Philippines. J Vector Ecol 30:277–283

    PubMed  Google Scholar 

  • Majambere S, Lindsay SW, Green C, Kandeh B, Fillinger U (2007) Microbial larvicides for malaria control in The Gambia. Malariol J 6:76

    Article  Google Scholar 

  • Makundi EA, Mboera LEG, Malebo HM, Kitua AY (2007) Priority setting on malaria interventions in Tanzania: strategies and challenges to mitigate against the intolerable burden. Am J Trop Med Hyg 77:106–111

    PubMed  Google Scholar 

  • Margalit J, Dean D (1985) The story of Bacillus thuringiensis israelensis (B.t.i.). J Am Mosq Control Assoc 1:1–7

    PubMed  CAS  Google Scholar 

  • McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–195

    Article  PubMed  CAS  Google Scholar 

  • Molloy D, Jamnback H (1981) Field evaluation on Bacillus thuringeinsis var. israelensis as a blackfly biocontrol agent and its effect on non target stream insects. J Econ Ent 74:314–318

    Google Scholar 

  • Mulla MS, Federici BA, Darwazeh HA (1982) Larvicidal efficacy of Bacillus thuringiensis serotype H-14 against stagnant water mosquitoes and its effects on non target-organisms. Environ Ent 11:788–795

    Google Scholar 

  • Mulla MS, Darwazeh HA, Zgomba M (1990) Effect of some environmental factors on the efficacy of Bacillus sphaericus 2362 and Bacillus thuringiensis (H-14) against mosquitoes. Bull Soc Vector Ecol 15:166–175

    Google Scholar 

  • Mulligan FS III, Schaefer CH, Wilder WH (1980) Efficacy and persistence of Bacillus sphaericus and B. thuringiensis H-14 against mosquitoes under laboratory and field conditions. J Econ Ent 73:684–688

    Google Scholar 

  • N'Guessan R, Corbel V, Akogbeto M, Rowland M (2007) Reduced efficacy of insecticide treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 13:199–206

    Article  PubMed  Google Scholar 

  • Perez C, Fernandez LE, Sun J, Folch JL, Gill SS, Soberon M, Bravo A (2005) Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Nat Acad Sci USA 102:18303–18308

    Google Scholar 

  • Priest FG (1992) Biological control of mosquitoes and other biting flies by Bacillus sphaericus and Bacillus thuringiensis. J Appl Bacteriol 72:357–369

    PubMed  CAS  Google Scholar 

  • Protopopoff N, Bortel van Marcotty WT, van Herp M, Maes P, Baza D, Alessandro U, Coosemans M (2007a) Spatial targeted vector control in the highlands of Burundi and its impact on malaria transmission. Malariol J 6:158

    Article  Google Scholar 

  • Protopopoff N, van Herp M, Maes P, Reid T, Baza D, d'Alessandro U, Coosemans M (2007b) Vector control in a malaria epidemic occurring within a complex emergency situation in Burundi: a case study. Malariol J 6:93

    Article  Google Scholar 

  • Puchi ND (2005) Factors affecting the efficency and persistance of Bacillus thuringiensis var. israelensis on Anopheles aquasalis Curry (Diptera:Culicidae), a malaria vector in Venezuela. Entomotropica 20:213–233

    Google Scholar 

  • RBM (2005) World Malaria report 2005. WHO, Geneva, S 293

    Google Scholar 

  • Russell TL, Brown MD, Purdie DM, Ryan PA, Brian H, Kay BH (2003) Efficacy of VectoBac (Bacillus thuringiensis variety israelensis) formulations for mosquito control in Australia. J Econ Ent 96:1786–1791

    Article  Google Scholar 

  • Rydzanicz K, Lonc E, Kiewra D, De Chant P, Krause S, Becker N (2009) Evaluation of two application techniques of three microbial larvicide formulations against Culex p. pipiens in irrigation fields in Wroclaw, Poland. J Am Mosq Control Assoc 25:140–148

    Article  PubMed  Google Scholar 

  • Silva-Filha MH, Regis L, Oliveira CMF, Furtado AF (2001) Impact of a 26-month Bacillus sphaericus trial on the preimaginal density of Culex quinquefasciatus in an urban area of Recife, Brazil. J Am Mosq Control Assoc 17:45–50

    PubMed  CAS  Google Scholar 

  • Sinegre G (1984) La résistance des Diptères Culicides en France in:Colleque sur la réduction d'efficacoté des traitements insecticides et acaricides et problèmes de résistance, Paris, pp 47–57

    Google Scholar 

  • Singer S (1973) Insecticidal activity of recent bacterial isolates and their toxins against mosquito larvae. Nature 244:110–111

    Article  PubMed  CAS  Google Scholar 

  • Sorensen MA, Walton WE, Trumble JT (2007) Impact of inorganic pollutants perchlorate and hexavalent chromium on efficacy of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis against Culex quinquefasciatus (Diptera:Culicidae). J Med Entomol 44:811–816

    Article  PubMed  CAS  Google Scholar 

  • Su TS (2008) Evaluation of water-soluble pouches of Bacillus sphaericus applied as prehatch treatment against Culex mosquitoes in simulated catch basins. J Am Mosq Control Assoc 24:54–60

    Article  PubMed  Google Scholar 

  • Tabashnik BE, Cushing NL, Finson N, Johnson MW (1990) Development of resistance to Bacillus thuringiensis in field populations of Plutella xylostella in Hawaii. J Econ Ent 83:1671–1676

    Google Scholar 

  • Thorne L, Garduno F, Thompson T (1986) Structural similarity between the Lepidoptera and Diptera-specific insecticidal endotoxin genes of Bacillus thuringiensis subsp. kurstaki and israelensis. J Bacteriol 166:801–811

    PubMed  CAS  Google Scholar 

  • Walker K, Lynch M (2007) Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. J Med Vet Entomol 21:2–21

    Article  CAS  Google Scholar 

  • Ward ES, Ellar DJ (1988) Cloning and expression of two homologous genes of Bacillus thuringiensis subsp. israelensis which encode 130-kilodalton mosquitocidal proteins. J Bacteriol 170:727–735

    PubMed  CAS  Google Scholar 

  • Weiser J (1984) A mosquito-virulent Bacillus sphaericus in adult Simulium damnosum from Northern Nigeria. Zbl Mikrobiol 139:57–60

    CAS  Google Scholar 

  • WHO (1999) Bacillus thuringiensis, Environmental Health Criteria. IPCS, pp 217

    Google Scholar 

  • WHO (2004) Review of VectoBac WG, PermaNet and Gokilaht 5EC. WHO/CDS/WHOPES/2004.8, Geneva

    Google Scholar 

  • Wirth MC, Park HW, Walton WE, Federici BA (2005) Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Appl Environ Microbiol 71:185–189

    Article  PubMed  CAS  Google Scholar 

  • Wirth M, Yang Y, Walton WE, Federici BA, Berry C (2007) Mtx Toxins Synergize Bacillus sphaericus and Cry11Aa against Susceptible and Insecticide-Resistant Culex quinquefasciatus Larvae. Applied and Environmental Microbiology 73(19):6066–6071

    Google Scholar 

  • Yohannes M, Haile M, Ghebreyesus TA, Witten KH, Getachew A, Byass P, Lindsay SW (2005) Can source reduction of mosquito larval habitat reduce malaria transmission in Tigray, Ethiopia? Trop Med Int Hlth 10:1274–1285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, N. (2011). Natural Remedies in the Fight Against Insects. In: Mehlhorn, H. (eds) Nature Helps.... Parasitology Research Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19382-8_3

Download citation

Publish with us

Policies and ethics