Advertisement

Effects of Ash Applications on Soil Status, Nutrition, and Growth of Pinus radiata D. Don Plantations

  • Beatriz OmilEmail author
  • Federico Sánchez-Rodríguez
  • Agustin Merino
Chapter

Abstract

The aim of this study was to evaluate the effectiveness of multiple applications of biomass ash to acid soils. The study was carried out in two stands of Pinus radiata D. Don, aged 13 and 15 years, in the province of Lugo (northwest Spain). The soils in the stands were developed on lutites and migmatites. Experimental plots (each 1,225 m2) were established, and the experimental treatments were as follows: control (untreated), ash (addition of 4.5 Mg dry matter ha−1 year−1 in 2003, 2004, and 2005) and ash plus P (addition of ash plus phosphate fertilizer in 2003).

The ash was generated in a moving grate furnace, and had the following characteristics: pH 8.9–13.5, high concentrations of K, Ca, Mg, and P, and low N content and low concentration of heavy metals.

The responses of the forest stands, evaluated as the effects on forest nutrition and tree growth, were measured in 2005, 3 years after the initial treatment. The results showed that continuous fertilization with ash improved the nutritional status and growth of Pinus radiata D. Don stands, and resulted in increased contents of the main macronutrients in needles and soil.

Keywords

Phosphate Fertilizer Pinus Radiata Foliar Concentration Nutrient Export Breast Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arvidsson H, Lundkvist H (2002) Needle chemistry in young Norway spruce stands after application of crushed wood ash. Plant Soil 238:159–174CrossRefGoogle Scholar
  2. ASTM (1994) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM C618-94. American Society for Testing and Materials), West ConshohockenGoogle Scholar
  3. Ballard TM, Carter RE (1986) Evaluating forest stand nutrient status. Land management report no. 20. Ministry of Forests, VictoriaGoogle Scholar
  4. Birk EM (1994) Fertilizer use in the management of pine and eucalyptus plantations in Australia: a review of past and current practices. State Forest of New South Wales N Z J For Sci 24:289–320Google Scholar
  5. Blander B (1997) The inorganic chemistry of the combustion of aspen wood with added sulphur. Biomass Bioenergy 12:289–293CrossRefGoogle Scholar
  6. Bonneau M (1995) Fertilisation des Forêts dans les Pays Tempérés. École Nationale du Génie Rural des Eaux et des Forêts (ENGREF), NancyGoogle Scholar
  7. Castedo F (2004) Modelo dinámico de crecimiento para las masas de Pinus radiata D. Don en Galicia. Simulación de alternativas selvícolas con inclusión de riesgo de incendio. Doctoral thesis, Escuela Politécnica Superior, Universidad de Santiago de Compostela, Santiago de CompostelaGoogle Scholar
  8. Demeyer A, Voundinkana JC, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–295PubMedCrossRefGoogle Scholar
  9. Emilsson S (2006) International handbook from extraction of forest fuels to ash recycling. Skogsstyrelsen/Swedish Forest Agency, KarlstadGoogle Scholar
  10. Ericsson T (1994) Nutrient dynamics and requirements of forest crops. N Z J For Sci 24:133–168Google Scholar
  11. Erich MS, Ohno T (1992) Phosphorous availability to corn from wood ash amended soils. Water Air and Soil Pollution 64:475–486Google Scholar
  12. European Communities (1986) Council directive on the protection environment and in particular on the soil when sewage sludge is used in agriculture (86/278 EEC). Off J Eur Communities 181:6–12Google Scholar
  13. FAO-UNESCO (1998) Clasificación de Suelos FAO. Base de Referencia de los Suelos del Mundo. FAO, RomeGoogle Scholar
  14. Ferm A, Hokkanen A, Moilanen M, Issakainen J (1992) Effects of wood bark ash on the ground and nutrition of a Scots pine afforestation in central Finland. Plant Soil 147:305–316CrossRefGoogle Scholar
  15. Garcia-Rodeja I, Gil-Sostres F (1997) Prediction of parameters describing phosphorous desorption kinetics in soils of Galicia (northwest Spain). J Environ Qual 26:1363–1369CrossRefGoogle Scholar
  16. Gaskin J, Risse M (2002) Best management practices for wood ash agricultural soil amendment. Bulletin 1142. Cooperative Extension Service, College of Agricultural and Environmental Sciences, The University of Georgia, Athens, pp 1–4Google Scholar
  17. Gil-Bueno A, Monterroso C (1998) Metodoloxía de restauración de escombreiras na minería de carbón. In: II Congreso de Enxeñería da Paisaxe. Asociación Española de Ingeniería del Paisaje, Guipúzcoa, pp 101–109Google Scholar
  18. Gupta VK, Ali I (2001) Removal of DDD and DDE from wastewater using bagasse fly ash a sugar industry. Water Res 35:33–40PubMedCrossRefGoogle Scholar
  19. Helmisaari HS, Saarsalmi A, Kukkola M (2009) Effects of wood ash and nitrogen fertilization on fine root biomass and soil foliage nutrients in a Norway spruce stand in Finland. Plant Soil 314:121–132CrossRefGoogle Scholar
  20. Hopmans P, Chappell HN (1994) Growth response of young, thinned Douglas-fir stands to nitrogen fertilizer in relation to soil properties and tree nutrition. Can J For Res 24:1684–1688CrossRefGoogle Scholar
  21. Hytönen J (2003) Effects of wood peat and coal ash fertilization on Scots pine foliar nutrient concentrations and growth on afforested former agricultural peat soils. Silva Fenn 37:219–234Google Scholar
  22. Korpilahti A, Moilanen M, Finér L (1998) Biomass ash utilization in Finland. In: International biomass ash workshop, Graz, Austria, Oct 1998Google Scholar
  23. Lambert MJ (1984) The use of foliar analysis in fertilizer reseach. In: Proceeding of the IUFRO Symposium on Site and Productivity of Fast Growing Plantations, Pretoria, South Africa. 269–291Google Scholar
  24. Larsson PE, Westling O (1998) Leaching of wood ash and lime products: laboratory study. Scand J For Res 2:17–22Google Scholar
  25. Ludwig B, Rumpf S, Mindrup M, Meiwes KJ, Khanna P (2002) Effects of lime and wood ash on soil-solution chemistry, soil chemistry and nutritional status of a pine stand in northern Germany. Scandinavian Journal of Forest Research 17:225–237Google Scholar
  26. Mahmmood S, Finlay RD, Framson AM, Wallander H (2003) Effects of hardened wood ash on microbial activity. Plant growth and nutrient uptake by ectomycorrhizal spruce seedlings. FEMS Microbiol Ecol 43:121–131CrossRefGoogle Scholar
  27. Mehlich A, Mehlich N (1984) Extractant: a modification of Mehlich no. 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416CrossRefGoogle Scholar
  28. Merino A, Balbóa MA, Ródríguez-Soalleiro R, Álvarez-González JG (2005) Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. For Ecol Manage 207:325–339CrossRefGoogle Scholar
  29. Mesanza JM, Casado H, Castillo FJ (1993) Nutrient concentrations in Pinus radiata D. Don needles in the Basque Country (Spain): a preliminary classification of parameters and sites. Ann For Sci 12:85–98Google Scholar
  30. Miller BB, Dugwell DR, Kandiyoti R (2002) Partitioning of trace elements during the combustion of coal and biomass in a suspension-firing reactor. Fuel 81:159–171CrossRefGoogle Scholar
  31. Moilanen M, Silverberg K, Hokannen TJ (2002) Effects of wood-ash on the tree growth vegetation and substrate quality of a drained mire: a case study. For Ecol Manage 171:321–338CrossRefGoogle Scholar
  32. Naylor LM, Schmidt EJ (1986) Agricultural use of wood ash as a fertilizer and liming material. TAPPI J 69:114–119Google Scholar
  33. Nieminen JK (2011) Wood ash effects on soil fauna and interactions with carbohydrate supply: a mini-review. In: Insam H, Knapp BA (eds) Recycling of biomass ashes. Springer, Heidelberg, pp 46–56Google Scholar
  34. Obernberger I, Biedermann F, Widmann W, Riedl R (1997) Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 12:211–224CrossRefGoogle Scholar
  35. Ohno T, Erich MS (1990) Effect of wood ash application on soil pH and soil test nutrient level. Agric Ecosyst Environ 32:433–438CrossRefGoogle Scholar
  36. Omil B, Solla-Gullón F, Merino A (2005) Respuesta en crecimiento de una plantación de Pinus radiata D. Don. a la aplicación de lodos de lechería estabilizados con cal. Cuad Soc Esp Cienc For 5:191–196Google Scholar
  37. Raupach M (1967) Soil and fertilizer requirements for forests of Pinus radiata. Adv Agron 19:307–353CrossRefGoogle Scholar
  38. Romanyá J, Vallejo R (1996) Nutritional status and deficiency diagnosis of Pinus radiata plantations in Spain. For Sci 42:192–197Google Scholar
  39. Saarsalmi A, Mälkönen E, Pirainen S (2001) Effects of wood ash fertilization on forest soil chemical properties. Silva Fenn 35:355–368Google Scholar
  40. Salas AM, Elliot ET, Westfall DG, Cole CV, Six J (2003) The role of particulate organic matter in phosphorous cycling. Soil Sci Soc Am J 67:181–189CrossRefGoogle Scholar
  41. Sánchez-Rodríguez F (2001) Estudio de la Calidad de Estación, Producción y Selvicultura de Pinus radiata D. Don en Galicia. Doctoral Thesis. Santiago de Compostela UniversityGoogle Scholar
  42. Sánchez-Rodríguez F, Rodríguez-Soalleiro R, Español E, López CA, Merino A (2002) Influence of edaphic factors and tree nutritive status on the productivity of Pinus radiata D. Don plantations in northwestern Spain. For Ecol Manage 171:181–189CrossRefGoogle Scholar
  43. SAS Institute (2004) SAS STAT® user’s guide. SAS Institute, CaryGoogle Scholar
  44. Seoane S, Leirós MC (2001) Acidification–neutralization processes in a lignite mine spoil attended with fly ash or limestone. J Environ Qual 30:1420–1431PubMedCrossRefGoogle Scholar
  45. Silfverberg K, Huikari O (1985) Wood-ash fertilization on drained petlands. Folia For 633:1–25Google Scholar
  46. Solla-Gullón F, Santalla-Seoane M, Rodríguez-Soalleiro R, Merino A (2006) Nutritional status and growth of a young Pseudotsuga menziesii plantation in a temperate region after application of wood-bark ash. For Ecol Manage 237:312–321CrossRefGoogle Scholar
  47. Solla-Gullón F, Santalla M, Pérez-Cruzado C, Merino A, Rodríguez-Soalleiro R (2008) Response of Pinus radiata seedlings to application of mixed wood-bark ash at planning in a temperate region: nutrition and growth. For Ecol Manage 255:3873–3884CrossRefGoogle Scholar
  48. Torre-Minguela C, Giraldo GA (2006) Instalación térmica con biomasa residual en una industria del sector maderero. Proyecto fin de carrera. Escuela Técnica Superior de Ingenieros Industriales, Universidad de Valladolid, ValladolidGoogle Scholar
  49. Turner J, Lamber MJ (1986) Nutrition and nutritional relationships of Pinus radiata. Annu Rev Ecol Syst 17:325–350CrossRefGoogle Scholar
  50. Van Der Sloot HA, Cnubben PAJP (2000) Verkennende evaluatie kwaliteitsbeinvloeding poederkool pliegas-bijtoken van biomassa in een poederkoolcentrale of bijmengen van biomassa-assen met poederkoolviliegas. ECN-C-00-058Google Scholar
  51. Vance ED (1996) Land application of wood fired and combination boiler ashes: an overview. J Environ Qual 25:937–944CrossRefGoogle Scholar
  52. Vesterinen P (2003) Wood ash recycling state of the art in Finland and Sweden. VTT Processes, JyväskyläGoogle Scholar
  53. Virgel-Mentxaka S (2002) Efecto de la aplicación de escoria siderúrgica LD y fertilizante NPK en sistemas agrarios. Doctoral thesis, Universidad del País Vasco, LeioaGoogle Scholar
  54. Weber A, Karsisto M, Leppanen R, Sudman V, Skujins J (1985) Microbial activities in a histosol. Effects of wood ash and NPK fertilizers. Soil Biol Biochem 17:291–296CrossRefGoogle Scholar
  55. Will GM (1985) Nutrient deficiencies end fertiliser user in New Zealand exotic forests. FRI bulletin no. 97. FRI, RotoruaGoogle Scholar
  56. Xirokostas N, Moutsatsou A, Arvelakis S, Koukios E (2001) Study of the behaviour of agricultural ashes concerning the combustion process of the raw material. University of AntennasGoogle Scholar
  57. Zas R (2003) Interpretación de las concentraciones foliares en nutrientes en plantaciones jóvenes de Pinus radiata D. Don en tierras agrarias en Galicia. Invest Agrar Sist Recur For 12:3–11Google Scholar
  58. Zas R, Serrada R (2002) Foliar nutrient status and nutritional relationships of young Pinus radiata D. Don plantations in northwest Spain. Forest Ecolology and Management 174:167–176Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Beatriz Omil
    • 1
    Email author
  • Federico Sánchez-Rodríguez
    • 1
  • Agustin Merino
    • 1
  1. 1.Forestry Faculty, Escuela Politécnica SuperiorUniversity of Santiago de CompostelaLugoSpain

Personalised recommendations