Non-uniform Stepping Approach to RFID Distance Bounding Problem

  • Ali Özhan Gürel
  • Atakan Arslan
  • Mete Akgün
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6514)


RFID systems are vulnerable to relay attacks (mafia fraud and terrorist fraud) as well as distance fraud. Several distance bounding protocols suitable to RFID systems were proposed to avoid these attacks. The common point of these protocols is to try to reduce success probability of the attacker. To the best of our knowledge, there is no RFID distance bounding protocol without final signature that provides success probability of attacker smaller than (3/4) n in the presence of all frauds. In this paper, we propose an RFID distance bounding protocol that creates binary responses by traversing the register with non-uniform steps based on the secret key in addition to binary challenges. Our protocol without final signature is the first to converge the success probability of the attacker to the ideal case, which is (1/2) n for all frauds. Furthermore, our protocol is robust against disturbances of channel, has low computational cost and also provides privacy.


Success Probability Terrorist Attack Exchange Phase Security Parameter Attack Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avoine, G., Bingöl, M.A., Kardaş, S., Lauradoux, C., Martin, B.: A Framework for Analyzing RFID Distance Bounding Protocols. Journal of Computer Security – Special Issue on RFID System Security (2010)Google Scholar
  2. 2.
    Avoine, G., Tchamkerten, A.: An efficient distance bounding RFID authentication protocol: balancing false-acceptance rate and memory requirement. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 250–261. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Brands, S., Chaum, D.: Distance Bounding Protocols (Extended Abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  4. 4.
    Bussard, L.: Trust Establishment Protocols for Communicating Devices. PhD thesis, Eurecom-ENST (Paris, France)Google Scholar
  5. 5.
    Capkun, S., Buttyán, L., Hubaux, J.P.: SECTOR: secure tracking of node encounters in multi-hop wireless networks. In: SASN, pp. 21–32 (2003)Google Scholar
  6. 6.
    Desmedt, Y.G., Goutier, C., Bengio, S.: Special Uses and Abuses of the Fiat Shamir Passport Protocol. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 21–39. Springer, Heidelberg (1988)Google Scholar
  7. 7.
    Drimer, S., Murdoch, S.: Keep Your Enemies Close: Distance Bounding Against Smartcard Relay Attacks. In: Proceedings of USENIX Security (2007)Google Scholar
  8. 8.
    Finkenzeller, K.: RFID Handbook. John Wiley and Sons, Chichester (2003)CrossRefGoogle Scholar
  9. 9.
    Hancke, G.: A Practical Relay Attack on ISO 14443 Proximity Cards (2005) (manuscript)Google Scholar
  10. 10.
    Hancke, G., Kuhn, M.: An RFID Distance Bounding Protocol. In: Conference on Security and Privacy for Emerging Areas in Communication Networks – SecureComm 2005, Athens, Greece, IEEE, pp. 67–73. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  11. 11.
    Kara, O., Kardaş, S., Bingöl, M.A., Avoine, G.: Optimal Security Limits of RFID Distance Bounding Protocols. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 220–238. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Kfir, Z., Wool, A.: Picking Virtual Pockets Using Relay Attacks on Contactless Smartcard Systems. In: Conference on Security and Privacy for Emerging Areas in Communication Networks – SecureComm 2005, Athens, Greece, IEEE, pp. 67–73. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  13. 13.
    Kim, C.H., Avoine, G.: RFID Distance Bounding Protocol with Mixed Challenges to Prevent Relay Attacks. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 119–133. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Kim, C.H., Avoine, G., Koeune, F., Standaert, F.X., Pereira, O.: The Swiss-Knife RFID Distance Bounding Protocol. In: Lee, P., Cheon, J. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 98–115. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Melia-Segui, J., Garcia-Alfaro, J., Herrera-Joancomarti, J.: Analysis and Improvement of a Pseudorandom Number Generator for EPC Gen2 Tags. In: Sion, R., Curtmola, R., Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) RLCPS, WECSR, and WLC 2010. LNCS, vol. 6054, pp. 34–46. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Munilla, J., Peinado, A.: Distance Bounding Protocols for RFID Enhanced by using Void-Challenges and Analysis in Noisy Channels. Wireless Communications and Mobile Computing 8, 1227–1232 (2008)CrossRefGoogle Scholar
  17. 17.
    Munilla, J., Peinado, A.: Attacks on a distance bounding protocol. Computer Communications 33, 884–889 (2010)CrossRefGoogle Scholar
  18. 18.
    Nikov, V., Vauclair, M.: Yet Another Secure Distance-Bounding Protocol. Cryptology ePrint Archive, Report 2008/319 (2008),
  19. 19.
    Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., van der Lubbe, J.C.A.: Shedding Some Light on RFID Distance Bounding Protocols and Terrorist Attacks., Computer Science, Cryptography and Security (2009)Google Scholar
  20. 20.
    Reid, J., Gonzalez Neito, J., Tang, T., Senadji, B.: Detecting Relay Attacks with Timing Based Protocols. In: Bao, F., Miller, S. (eds.) Proceedings of the 2nd ACM Symposium on Information, Computer and Communications Security – ASIACCS 2007, Singapore, Republic of Singapore, pp. 204–213. ACM, New York (2007)Google Scholar
  21. 21.
    Singelée, D., Preneel, B.: Location verification using secure distance bounding protocols. In: IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, p. 840 (2005)Google Scholar
  22. 22.
    Singelée, D., Preneel, B.: Distance Bounding in Noisy Environments. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 101–115. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Tu, Y.J., Piramuthu, S.: RFID Distance Bounding Protocols. In: First International EURASIP Workshop on RFID Technology, Vienna, Austria (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ali Özhan Gürel
    • 1
  • Atakan Arslan
    • 1
    • 2
  • Mete Akgün
    • 1
    • 3
  1. 1.TÜBİTAK UEKAEGebzeTurkey
  2. 2.Department of Electronics and Communications, Faculty of Electrical and Electronics Engineeringİstanbul Technical UniversityİstanbulTurkey
  3. 3.Computer Engineering DepartmentBoğaziçi UniversityİstanbulTurkey

Personalised recommendations