Advertisement

Secret-Sharing Hardware Improves the Privacy of Network Monitoring

  • Johannes Wolkerstorfer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6514)

Abstract

Network service providers monitor the data flow to detect anomalies and malicious behavior in their networks. Network monitoring inspects the data flow over time and thus has to store packet data. Storing of data impedes the privacy of users. A radically new approach counteracts such privacy concerns by exploiting threshold cryptography. It encrypts all monitored traffic. The used symmetric keys are made available to monitoring entities only if they collect enough evidence of malicious behavior. This new approach overcomes weaknesses of packet anonymization. It calls for dedicated hardware that is able to encrypt packets and generate key-share information for gigabit networks. This article proves that the application of Shamir’s secret sharing scheme is possible. The presented hardware is able to protect up to 1.8 million packets per second. The creation of such a high-speed hardware required innovations on the algorithmic, the protocol, and on the architectural level. The outcome is a surprisingly small circuit that fits commercially available FPGA cards. It was tested under real-world conditions. It proved to protect the users’ privacy while monitoring gigabit networks.

Keywords

Secret Sharing Threshold Cryptography Hardware Acceleration Field-Programmable Gate Array (FPGA) Gigabit Ethernet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American National Standards Institute (ANSI). AMERICAN NATIONAL STANDARD X9.62-2005. Public Key Cryptography for the Financial Services Industry, The Elliptic Curve Digital Signature Algorithm, ECDSA (2005)Google Scholar
  2. 2.
    Bianchi, G., Teofili, S., Pomposini, M.: New Directions in Privacy-Preserving Anomaly Detection for Network Traffic. In: Antonatos, S., Bezzi, M., Boschi, E., Trammell, B., Yurcik, W. (eds.) NDA, pp. 11–18. ACM, New York (2008)CrossRefGoogle Scholar
  3. 3.
    Broadcom. BCM5464SR Quad-Port Gigabit Copper Transceiver with Copper/Fiber Media Interface (2006), http://www.broadcom.com/products/Physical-Layer/Gigabit-Ethernet-PHYs/BCM5464SR
  4. 4.
    Broder, A.Z., Mitzenmacher, M.: Network Applications of Bloom Filters: A Survey. Internet Mathematics 1(4) (2003)Google Scholar
  5. 5.
    Burkhart, M., Schatzmann, D., Trammell, B., Boschi, E., Plattner, B.: The Role of Network Trace Anonymization Under Attack. SIGCOMM Comput. Commun. Rev. 40(1), 5–11 (2010)CrossRefGoogle Scholar
  6. 6.
    EU Article 29 Data Protection Working Party. Opinion on the Concept of Personal Data (01248/07/EN WP 136) (April 2007)Google Scholar
  7. 7.
    Frankel, S., Glenn, R., Kelly, S.: RFC 3602: The AES-CBC Cipher Algorithm and Its Use with IPsec. RFC 3602 (Proposed Standard) (September 2003)Google Scholar
  8. 8.
    Harn, L., Lin, C.: Detection and Identification of Cheaters in (t, n) Secret Sharing Scheme. Designs, Codes and Cryptography 52, 15–24 (2009), doi:10.1007/s10623-008-9265-8MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hoffman, P.: RFC 3664: The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol, IKE (2004)Google Scholar
  10. 10.
    Hoffman, P.: RFC 4308: Cryptographic Suites for IPsec. RFC 4308 (Proposed Standard) (December 2005)Google Scholar
  11. 11.
    Lemsitzer, S., Wolkerstorfer, J., Felber, N., Braendli, M.: Multi-gigabit GCM-AES Architecture Optimized for FPGAs. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 227–238. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton (1997) ISBN 0-8493-8523-7, http://www.cacr.math.uwaterloo.ca/hac/ zbMATHGoogle Scholar
  13. 13.
    Pang, R., Allman, M., Paxson, V., Lee, J.: The Devil and Packet Trace Anonymization. SIGCOMM Comput. Commun. Rev. 36(1), 29–38 (2006)CrossRefGoogle Scholar
  14. 14.
    Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Song, H., Sproull, T.S., Attig, M., Lockwood, J.W.: Snort Offloader: A Reconfigurable Hardware NIDS Filter. In: Rissa, T., Wilton, S.J.E., Leong, P.H.W. (eds.) FPL, pp. 493–498. IEEE, Los Alamitos (2005)Google Scholar
  16. 16.
    Stanford University. NetFPGA Project. NetFPGA (2009), http://netfpga.org/
  17. 17.
    Wolkerstorfer, J., Szekely, A., Lorünser, T.: IPsec Security Gateway for Gigabit Ethernet. In: Ostermann, T. (ed.) Austrochip 2008 – Proceedings of the 16th Austrian Workshop on Microelectronics (October 2008)Google Scholar
  18. 18.
    Xilinx Corporation. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet (2007), http://www.xilinx.com/support/documentation/virtex-ii_pro_data_sheets.htm

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Johannes Wolkerstorfer
    • 1
  1. 1.Telecommunications Research Center Vienna (FTW)ViennaAustria

Personalised recommendations