Skip to main content

Phase Registration of a Single Quasi-Periodic Signal Using Self Dynamic Time Warping

  • Conference paper
Book cover Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6494))

Included in the following conference series:

Abstract

This paper proposes a method for phase registration of a single non-parametric quasi-periodic signal. After a short-term period has been detected for each sample by normalized autocorrelation, Self Dynamic Time Warping (Self DTW) between a quasi-periodic signal and that with multiple-period shifts is applied to obtain corresponding samples of the same phase. A phase sequence is finally estimated by the optimization framework including the data term derived from the correspondences, the regularization term derived from short-term periods, and a monotonic increasing constraint of the phase. Experiments on quasi-periodic signals from both simulated and real data show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newkirk, D., Karlquist, R.: Communication systems, 2nd edn. McGraw-Hill, Inc., New York (1981)

    Google Scholar 

  2. Anderson, J.B., Aulin, T., Sundberg, C.E.: Digital phase modulation. Springer, Heidelberg (1986)

    Book  Google Scholar 

  3. Sarkar, S., Phillips, J., Liu, Z., Vega, I., Grother, P., Bowyer, K.: The humanid gait challenge problem: Data sets, performance, and analysis. Trans. of Pattern Analysis and Machine Intelligence 27, 162–177 (2005)

    Article  Google Scholar 

  4. van Ouwerkerk, J.: Image super-resolution survey. Image and Vision Computing 24, 1039–1052 (2006)

    Article  Google Scholar 

  5. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26, 43–49 (1978)

    Article  MATH  Google Scholar 

  6. Oka, R.: Spotting method for classification of real world data. Computer Journal 41, 559–565 (1998)

    Article  MATH  Google Scholar 

  7. Aronsson, D., Bjornemo, E., Johansson, M.: Estimation and detection of a periodic signal. In: Proc. of American Institute of Physics Conference, Bayesian Inference and Maximum Entropy Methods In Science and Engineering, vol. 872, pp. 139–146 (2006)

    Google Scholar 

  8. Znak, V.: Some aspects of estimating the detection rate of a periodic signal in noisy data and the time position of its components. Pattern Recognition and Image Analysis 19, 539–545 (2009)

    Article  Google Scholar 

  9. Handel, P., Tichavsky, P.: Adaptive estimation for periodic signal enhancement and tracking. International Journal of Adaptive Control and Signal Processing 8, 447–456 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barros, A.K., Ohnishi, N.: Amplitude estimation of quasi-periodic physiological signals by wavelets. IEICE Transactions on Information and Systems E83-D, 2193–2195 (2000)

    Google Scholar 

  11. Gruber, P., Todtli, J.: Estimation of quasiperiodic signal parameters by means of dynamicsignal models. IEEE Transactions on Signal Processing 42, 552–562 (1994)

    Article  Google Scholar 

  12. Nakashizuka, M.: A sparse decomposition method for periodic signal mixtures. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E91-A, 791–800 (2008)

    Article  Google Scholar 

  13. Wong, H., Sethares, W.A.: Estimation of pseudo-periodic signals. In: Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 2, pp. 557–560 (2004)

    Google Scholar 

  14. Murase, H., Sakai, R.: Moving object recognition in eigenspace representation: Gait analysis and lip reading. Pattern Recognition Letters 17, 155–162 (1996)

    Article  Google Scholar 

  15. Boulgouris, N., Plataniotis, K., Hatzinakos, D.: Gait recognition using linear time normalization. Pattern Recognition 39, 969–979 (2006)

    Article  MATH  Google Scholar 

  16. Mori, A., Makihara, Y., Yagi, Y.: Gait recognition using period-based phase synchronization for low frame-rate videos. In: Proc. of 20th Int. Conf. on Pattern Recognition, Istanbul, Turkey (2010)

    Google Scholar 

  17. Little, J., Boyd, J.: Recognizing people by their gait: The shape of motion. Videre: Journal of Computer Vision Research 1, 1–13 (1998)

    Google Scholar 

  18. Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Veeraraghavan, A., Chellappa, R., Roy-Chowdhury, A.: The function space of an activity. In: Proc. of the 2006 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, New York, USA, vol. 1, pp. 959–966 (2006)

    Google Scholar 

  20. Cuntoor, N., Kale, A., Chellappa, R.: Combining multiple evidences for gait recognition. In: Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, vol. 3, pp. 33–36 (2003)

    Google Scholar 

  21. Zhou, Z., Damper, R., Prugel-Bennett, A.: Model selection within a bayesian approach to extraction of walker motion. In: Proc. of the IEEE Computer Society Workshop on Biometrics 2006, New York, USA (2006)

    Google Scholar 

  22. Lee, L., Dalley, G., Tieu, K.: Learning pedestrian models for silhouette refinement. In: Proc. Int’l Conf. on Computer Vision 2003, vol. 1, pp. 663–670 (2003)

    Google Scholar 

  23. Liu, Z., Sarkar, S.: Effect of silhouette quality on hard problems in gait recognition. Trans. of Systems, Man, and Cybernetics Part B: Cybernetics 35, 170–183 (2005)

    Article  Google Scholar 

  24. Liu, Z., Sarkar, S.: Improved gait recognition by gait dynamics normalization. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 863–876 (2006)

    Article  Google Scholar 

  25. Sunderesan, A., Chowdhury, A., Chellappa, R.: A hidden markov model based framework for recognition of humans from gait sequences. In: IEEE Int’l Conf. on Image Processing 2003, vol. 2, pp. 93–96 (2003)

    Google Scholar 

  26. Makihara, Y., Yagi, Y.: Silhouette extraction based on iterative spatio-temporal local color transformation and graph-cut segmentation. In: Proc. of the 19th Int. Conf. on Pattern Recognition, Tampa, USA, Florida (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makihara, Y., Trung, N.T., Nagahara, H., Sagawa, R., Mukaigawa, Y., Yagi, Y. (2011). Phase Registration of a Single Quasi-Periodic Signal Using Self Dynamic Time Warping. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6494. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19318-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19318-7_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19317-0

  • Online ISBN: 978-3-642-19318-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics