Cage-Based Tracking for Performance Animation

  • Yann Savoye
  • Jean-Sébastien Franco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6494)


Full body performance capture is a promising emerging technology that has been intensively studied in Computer Graphics and Computer Vision over the last decade. Highly-detailed performance animations are easier to obtain using existing multiple views platforms, markerless capture and 3D laser scanner. In this paper, we investigate the feasibility of extracting optimal reduced animation parameters without requiring an underlying rigid kinematic structure. This paper explores the potential of introducing harmonic cage-based linear estimation and deformation as post-process of current performance capture techniques used in 3D time-varying scene capture technology. We propose the first algorithm for performing cage-based tracking across time for vision and virtual reality applications. The main advantages of our novel approach are its linear single pass estimation of the desired surface, easy-to-reuse output cage sequences and reduction in storage size of animations. Our results show that estimated parameters allow a sufficient silhouette-consistent generation of the enclosed mesh under sparse frame-to-frame animation constraints and large deformation.


Performance Capture Mesh Sequence Mesh Editing Enclose Model Markerless Motion Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE Comput. Graph. Appl. 27, 21–31 (2007)CrossRefGoogle Scholar
  2. 2.
    de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 papers, pp. 1–10. ACM, New York (2008)Google Scholar
  3. 3.
    Gall, J., Stoll, C., de Aguiar, E., Theobalt, C., Rosenhahn, B., Seidel, H.P.: Motion capture using joint skeleton tracking and surface estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, USA, pp. 1–8. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  4. 4.
    Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 papers, pp. 1–9. ACM, New York (2008)Google Scholar
  5. 5.
    Vlasic, D., Peers, P., Baran, I., Debevec, P., Popović, J., Rusinkiewicz, S., Matusik, W.: Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 28 (2009)Google Scholar
  6. 6.
    Ballan, L., Cortelazzo, G.M.: Marker-less motion capture of skinned models in a four camera set-up using optical flow and silhouettes. In: 3DPVT, Atlanta, GA, USA (2008)Google Scholar
  7. 7.
    Takai, T., Nobuhara, S., Yoshimoto, H., Matsuyama, T.: 3d video technologies: Capturing high fidelity full 3d shape, motion, and texture. In: International Workshop on Mixed Reality Technology for Filmmaking (in cooperation with ISMAR 2006) (2006)Google Scholar
  8. 8.
    Huang, P., Hilton, A., Starck, J.: Human motion synthesis from 3d video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1478–1485 (2009)Google Scholar
  9. 9.
    Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.P.: Differential coordinates for interactive mesh editing. In: Proceedings of Shape Modeling International, pp. 181–190. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  10. 10.
    Sorkine, O.: Differential representations for mesh processing. Computer Graphics Forum 25, 789–807 (2006)CrossRefGoogle Scholar
  11. 11.
    Lipman, Y., Sorkine, O., Alexa, M., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.P.: Laplacian framework for interactive mesh editing. International Journal of Shape Modeling (IJSM) 11, 43–61 (2005)CrossRefGoogle Scholar
  12. 12.
    Au, O.K.C., Tai, C.L., Liu, L., Fu, H.: Dual laplacian editing for meshes. IEEE Transactions on Visualization and Computer Graphics 12, 386–395 (2006)CrossRefGoogle Scholar
  13. 13.
    Luo, Q., Liu, B., Ma, Z.g., Zhang, H.b.: Mesh editing in roi with dual laplacian. In: CGIV 07: Proceedings of the Computer Graphics, Imaging and Visualisation, Washington, DC, USA, pp. 195–199. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  14. 14.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 109–116 (2007)Google Scholar
  15. 15.
    Meyer, M., Lee, H., Barr, A., Desbrun, M.: Generalized barycentric coordinates on irregular polygons. Journal of Graphics Tools 7, 13–22 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 561–566. ACM, New York (2005)Google Scholar
  17. 17.
    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 71 (2007)CrossRefGoogle Scholar
  18. 18.
    Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. In: ACM SIGGRAPH 2008 papers, pp. 78:1–78:10. ACM, New York (2008)CrossRefGoogle Scholar
  19. 19.
    Ju, T., Zhou, Q.Y., van de Panne, M., Cohen-Or, D., Neumann, U.: Reusable skinning templates using cage-based deformations. ACM Trans. Graph. 27, 1–10 (2008)CrossRefGoogle Scholar
  20. 20.
    Xian, C., Lin, H., Gao, S.: Automatic generation of coarse bounding cages from dense meshes. In: IEEE International Conference on Shape Modeling and Applications (Shape Modeling International 2009) (2009)Google Scholar
  21. 21.
    Sumner, R.W., Zwicker, M., Gotsman, C., Popović, J.: Mesh-based inverse kinematics. ACM Trans. Graph. 24, 488–495 (2005)CrossRefGoogle Scholar
  22. 22.
    Der, K.G., Sumner, R.W., Popović, J.: Inverse kinematics for reduced deformable models. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 1174–1179. ACM, New York (2006)Google Scholar
  23. 23.
    Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., Guo, B.: Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph. 26, 81 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yann Savoye
    • 1
  • Jean-Sébastien Franco
    • 1
  1. 1.INRIABordeaux UniversityFrance

Personalised recommendations