On Feature Combination and Multiple Kernel Learning for Object Tracking

  • Huchuan Lu
  • Wenling Zhang
  • Yen-Wei Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6494)


This paper presents a new method for object tracking based on multiple kernel learning (MKL). MKL is used to learn an optimal combination of \(\mathop \chi \nolimits^2\) kernels and Gaussian kernels, each type of which captures a different feature. Our features include the color information and spatial pyramid histogram (SPH) based on global spatial correspondence of the geometric distribution of visual words. We propose a simple effective way for on-line updating MKL classifier, where useful tracking objects are automatically selected as support vectors. The algorithm handle target appearance variation, and makes better usage of history information, which leads to better discrimination of target and the surrounding background. The experiments on real world sequences demonstrate that our method can track objects accurately and robustly especially under partial occlusion and large appearance change.


Object Tracking Visual Tracking Multiple Kernel Multiple Kernel Learn Spatial Pyramid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avidan, S.: Ensemble tracking. In: CVPR (2005)Google Scholar
  2. 2.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: CVPR (2006)Google Scholar
  3. 3.
    Tian, M., Zhang, W., Liu, F.: On-line ensemble SVM for robust object tracking. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 355–364. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Tang, F.F., Brennan, S.: Co-tracking using semi-supervised support vector machines. In: ICCV (2007)Google Scholar
  5. 5.
    Babenko, B., Yang, M.-H.: Visual tracking with online multiple instance learning. In: CVPR (2009)Google Scholar
  6. 6.
    Yin, Z., Robert, T.: Collins object tracking and detection after occlusion via numerical hybrid local and global mode-seeking. In: CVPR (2008)Google Scholar
  7. 7.
    Adam, A., Rivlin, E., Shimshoni, I.: Robust fragmentsbased tracking using the integral histogram. In: CVPR (2006)Google Scholar
  8. 8.
    Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the smo algorithm. In: ICML (2004)Google Scholar
  9. 9.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR (2007)Google Scholar
  10. 10.
    Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1998)Google Scholar
  11. 11.
    Varma, M., Ray, D.: Learning the discriminative power invariance trade off. In: ICCV (2007)Google Scholar
  12. 12.
    Rakotomamonjy, A., Bach, F., Canu, S.: More efficency in multiple kernel learning. In: ICML (2007)Google Scholar
  13. 13.
    Rakotomamonjy, A., Bach, F.R., Canu, S., Grandvalet, Y.: Simplemkl. Journal of Machine Learning Research 9, 2491–2521 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)Google Scholar
  15. 15.
    Grauman, K., Darrell, T.: Pyramid match kernels: Discriminative classification with sets of image features. In: ICCV (2005)Google Scholar
  16. 16.
    Pontil, M., Verri, A.: Support vector machines for 3d object recognition (PAMI)Google Scholar
  17. 17.
    Fergus, R., Perma, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: CVPR (2003)Google Scholar
  18. 18.
    Sivic, J., Russell, B., Efros, A., Zisserman, A., Freeman, W.: Discovering objects and location in images. In: ICCV (2005)Google Scholar
  19. 19.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR (2007)Google Scholar
  20. 20.
    Bosch, A., Zisserman, A., Munoz, X.: Geometric blur for template matching. In: CVPR (2001)Google Scholar
  21. 21.
    Wu, B., Nevatia, R.: Simultaneous object detection and segmentation by boosting local shape feature based classifier. In: CVPR (2007)Google Scholar
  22. 22.
    Haibin, L., Soatto, S.: Proximity distribution kernels for geometric context in category recognition.In: ICCV (2007)Google Scholar
  23. 23.
    Lanckriet, G., Cristianini, N., El Ghousi, L., Bartlett, P., Jordan, M.: Learning the kernel matrix with semi-definite programming. JMLR (2004)Google Scholar
  24. 24.
    Lim, J., Ross, D., Lin, R.-S., Yang, M.: Incremental learning for visual tracking. In: NIPS (2004)Google Scholar
  25. 25.
    Matthews, I., Ishikawa, T., Baker, S.: The template update problem. PAMI 26, 810–815 (2004)CrossRefGoogle Scholar
  26. 26.
    Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Huchuan Lu
    • 1
  • Wenling Zhang
    • 1
  • Yen-Wei Chen
    • 1
    • 2
  1. 1.School of Information and Communication EngineeringDalian University of TechnologyDalianChina
  2. 2.College of Information Science and EngineeringRitsumeikan UniversityKusatsuJapan

Personalised recommendations