Advertisement

Translation-Symmetry-Based Perceptual Grouping with Applications to Urban Scenes

  • Minwoo Park
  • Kyle Brocklehurst
  • Robert T. Collins
  • Yanxi Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6494)

Abstract

An important finding in our understanding of the human vision system is perceptual grouping, the mechanism by which visual elements are organized into coherent groups. Though grouping is generally acknowledged to be a crucial component of the mid-level visual system, in computer vision there is a scarcity of mid-level cues due to computational difficulties in constructing feature detectors for such cues. We propose a novel mid-level visual feature detector where the visual elements are grouped based on the 2D translation subgroup of a wallpaper pattern. Different from previous state-of-the-art lattice detection algorithms for near-regular wallpaper patterns, our proposed method can detect multiple, semantically relevant 2D lattices in a scene simultaneously, achieving an effective translation-symmetry-based segmentation. Our experimental results on urban scenes demonstrate the use of translation-symmetry for building facade super-resolution and orientation estimation from a single view.

Keywords

Discrete Cosine Transform Recall Rate Perceptual Grouping Lattice Detection Vector Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gardner, M.: The new ambidextrous universe: symmetry and asymmetry, from Mirrow reflections to superstrings. W.H. Freeman and Company, New York (1979)Google Scholar
  2. 2.
    Conners, R., Ng., C.: Developing a quantitative model of human preattentive vision, vol. 19. SMC (1989)Google Scholar
  3. 3.
    Weyl, H.: Symmetry. Princeton University Press, Princeton (1952)CrossRefzbMATHGoogle Scholar
  4. 4.
    Grunbaum, B., Shephard, G.: Tilings and Patterns. W.H. Freeman and Company, New York (1987)zbMATHGoogle Scholar
  5. 5.
    Liu, Y., Hel-Or, H., Kaplan, C.S., Van Gool, L.: Computational symmetry in computer vision and computer graphics. Foundations and Trends in Computer Graphics and Vision 5, 1–156 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, Y., Collins, R.T., Tsin, Y.: A computational model for periodic pattern perception based on frieze and wallpaper groups. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 354–371 (2004)CrossRefGoogle Scholar
  7. 7.
    Hays, J., Leordeanu, M., Efros, A., Liu, Y.: Discovering texture regularity as a higher-order correspondence problem. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 522–535. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Park, M., Collins, R.T., Liu, Y.: Deformed lattice discovery via efficient mean-shift belief propagation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 474–485. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Park, M., Brocklehurst, K., Collins, R., Liu, Y.: Deformed Lattice Detection in Real-World Images Using Mean-Shift Belief Propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 1804–1816 (2009)CrossRefGoogle Scholar
  10. 10.
    Han, J., McKenna, S., Wang, R.: Regular texture analysis as statistical model selection. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 242–255. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Canada, B.A., Thomas, G.K., Cheng, K.C., Wang, J.Z., Liu, Y.: Automatic lattice detection in near-regular histology array images. In: Proceedings of the IEEE International Conference on Image Processing (2008)Google Scholar
  12. 12.
    Mitra, N.J., Guibas, L., Pauly, M.: Partial and approximate symmetry detection for 3d geometry. ACM Transactions on Graphics 25, 560–568 (2006)CrossRefGoogle Scholar
  13. 13.
    Schaffalitzky, F., Zisserman, A.: Geometric grouping of repeated elements within images. In: Forsyth, D., Mundy, J.L., Di Gesú, V., Cipolla, R. (eds.) Shape, Contour, and Grouping 1999. LNCS, vol. 1681, pp. 165–181. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Korah, T., Rasmussen, C.: Analysis of building textures for reconstructing partially occluded facades. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 359–372. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., Dellaert, F.: Detecting and Matching Repeated Patterns for Automatic Geo-tagging in Urban Environments. In: Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  16. 16.
    Hamey, L.G.O., Kanade, T.: Computer analysis of regular repetitive textures. In: Proceedings of a Workshop on Image Understanding Workshop. Morgan Kaufmann Publishers Inc., San Francisco (1989)Google Scholar
  17. 17.
    Lin, H.C., Wang, L.L., Yang, S.N.: Extracting periodicity of a regular texture based on autocorrelation functions. Pattern Recognition Letters, 433–443 (1997)Google Scholar
  18. 18.
    Leung, T., Malik, J.: Detecting, localizing and grouping repeated scene elements from an image. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 546–555. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  19. 19.
    Liu, Y., Tsin, Y., Lin, W.C.: The Promise and Perils of Near-Regular Texture. International Journal of Computer Vision 62, 145–159 (2005)CrossRefGoogle Scholar
  20. 20.
    Tsin, Y., Liu, Y., Ramesh, V.: Texture replacement in real images. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 539–544 (2001)Google Scholar
  21. 21.
    Liu, Y., Belkina, T., Hays, J., Lublinerman, R.: Image De-fencing. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  22. 22.
    Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)Google Scholar
  23. 23.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC (2002)Google Scholar
  24. 24.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV (2009)Google Scholar
  26. 26.
    Collins, R.T., Beveridge, J.R.: Matching perspective views of coplanar structures using projective unwarping and similarity matching. In: Proc. Int. Conf. of Computer Vision and Pattern Recognition, CVPR, pp. 240–245 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Minwoo Park
    • 1
  • Kyle Brocklehurst
    • 1
  • Robert T. Collins
    • 1
  • Yanxi Liu
    • 1
    • 2
  1. 1.Dept. of Computer Science and EngineeringThe Pennsylvania State UniversityUSA
  2. 2.Dept. of Electrical EngineeringThe Pennsylvania State UniversityUSA

Personalised recommendations