Class-Specific Low-Dimensional Representation of Local Features for Viewpoint Invariant Object Recognition

  • Bisser Raytchev
  • Yuta Kikutsugi
  • Toru Tamaki
  • Kazufumi Kaneda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6494)


In this paper we propose a new general framework to obtain more distinctive local invariant features by projecting the original feature descriptors into low–dimensional feature space, while simultaneously incorporating also class information. In the resulting feature space, the features from different objects project to separate areas, while locally the metric relations between features corresponding to the same object are preserved. The low–dimensional feature embedding is obtained by a modified version of classical Multidimensional Scaling, which we call supervised Multidimensional Scaling (sMDS). Experimental results on a database containing images of several different objects with large variation in scale, viewpoint, illumination conditions and background clutter support the view that embedding class information into the feature representation is beneficial and results in more accurate object recognition.


Linear Discriminant Analysis Multidimensional Scaling Principle Component Analysis Sift Descriptor Local Image Descriptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 12(60), 91–110 (2004)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Computer Vision and Image Understanding (CVIU) 110(3), 346–359 (2008)CrossRefGoogle Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 20–25 (2005)Google Scholar
  4. 4.
    Tuytelaars, T., Mikolajczyk, K.: Local Invariant Feature Detectors: A Survey. Foundations and Trends in Computer Graphics and Vision 3(3), 177–280 (2007)CrossRefGoogle Scholar
  5. 5.
    Murase, H., Nayar, S.: Visual Learning and Recognition of 3-D Objects from Appearance. International Journal of Computer Vision 14(1), 5–24 (1995)CrossRefGoogle Scholar
  6. 6.
    Csurka, G., Bray, C., Dance, C., Fan, L.: Visual Categorization with bags of keypoints. In: Proc. ECCV Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)Google Scholar
  7. 7.
    Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision, pp. 1470–1477 (2003)Google Scholar
  8. 8.
    Cox, T., Cox, M.: Multidimensional Scaling, 2nd edn. Chapman and Hall, Boca Raton (2000)zbMATHGoogle Scholar
  9. 9.
    Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ke, Y., Sukthankar, R.: PCA–SIFT: A More Distinctive Representation for Local Image Descriptors. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)Google Scholar
  11. 11.
    Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification with sets of image features. In: Proc. IEEE Int. Conf. Computer Vision, vol. 2, pp. 1458–1465 (2005)Google Scholar
  12. 12.
    van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Smeulders, A.W.M.: Kernel codebooks for scene categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Hua, G., Brown, M., Winder, S.: Discriminant embedding for local image descriptors. In: Proc. IEEE Int. Conf. Computer Vision, pp. 1–8 (2007)Google Scholar
  14. 14.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. PAMI 19(7), 711–720 (1997)CrossRefGoogle Scholar
  15. 15.
    Torgeson, W.: Multidimensional Scaling: I. Theory and method. Psychometrika 17, 401–419 (1952)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mardia, K., Kent, J., Bibby, J.: Multivariate Analysis. Academic Press, London (1979)zbMATHGoogle Scholar
  17. 17.
    Wandell, B., Brewer, A.A., Dougherty, R.F.: Visual Field Map Clusters in Human Cortex. Phil. Trans. of the Royal Society London 360, 693–707 (2005)CrossRefGoogle Scholar
  18. 18.
    Gower, J.: Adding a point to vector diagrams in multivariate analysis. Biometrica 55, 582–585 (1968)CrossRefzbMATHGoogle Scholar
  19. 19.
  20. 20.
    Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q.: Graph Embedding and Extensions: A General Framework for Dimensionality Rediction. IEEE Trans. PAMI 29(1), 40–51 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bisser Raytchev
    • 1
  • Yuta Kikutsugi
    • 1
  • Toru Tamaki
    • 1
  • Kazufumi Kaneda
    • 1
  1. 1.Department of Information EngineeringHiroshima UniversityJapan

Personalised recommendations