A Phase Discrepancy Analysis of Object Motion

  • Bolei Zhou
  • Xiaodi Hou
  • Liqing Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6494)


Detecting moving objects against dynamic backgrounds remains a challenge in computer vision and robotics. This paper presents a surprisingly simple algorithm to detect objects in such conditions. Based on theoretic analysis, we show that 1) the displacement of the foreground and the background can be represented by the phase change of Fourier spectra, and 2) the motion of background objects can be extracted by Phase Discrepancy in an efficient and robust way. The algorithm does not rely on prior training on particular features or categories of an image and can be implemented in 9 lines of MATLAB code.

In addition to the algorithm, we provide a new database for moving object detection with 20 video clips, 11 subjects and 4785 bounding boxes to be used as a public benchmark for algorithm evaluation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)Google Scholar
  2. 2.
    Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 2 (2004)Google Scholar
  3. 3.
    Cheung, S., Kamath, C.: Robust techniques for background subtraction in urban traffic video. In: Video Communications and Image Processing, SPIE Electronic Imaging, vol. 5308, pp. 881–892 (2004)Google Scholar
  4. 4.
    Viola, P., Jones, M.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  5. 5.
    Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: A benchmark. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 304–311 (2009)Google Scholar
  6. 6.
    Tian, T., Tomasi, C., Heeger, D.: Comparison of approaches to egomotion computation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 315–320 (1996)Google Scholar
  7. 7.
    Han, M., Kanade, T.: Reconstruction of a scene with multiple linearly moving objects. International Journal of Computer Vision 59, 285–300 (2004)CrossRefGoogle Scholar
  8. 8.
    Irani, M., Anandan, P.: A unified approach to moving object detection in 2D and 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 577–589 (1998)CrossRefGoogle Scholar
  9. 9.
    Vernon, D.: Fourier vision: segmentation and velocity measurement using the Fourier transform. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  10. 10.
    Black, M., Anandan, P.: A framework for the robust estimation of optical flow. In: Proc. IEEE Conf. on International Conference of Computer Vision, pp. 231–236 (1993)Google Scholar
  11. 11.
    Itti, L., Koch, C., Niebur, E., et al.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 1254–1259 (1998)CrossRefGoogle Scholar
  12. 12.
    Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1999)zbMATHGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    Bashir, F., Porikli, F.: Performance evaluation of object detection and tracking systems. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2006) (2006)Google Scholar
  16. 16.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Cengage-Engineering (2007)Google Scholar
  17. 17.
    Hou, X., Zhang, L.: Dynamic Visual Attention: Searching for coding length increments. In: Advances in Neural Information Processing Systems, vol. 21, pp. 681–688 (2008)Google Scholar
  18. 18.
    Itti, L., Baldi, P.: Bayesian surprise attracts human attention, pp. 547–554 (2006)Google Scholar
  19. 19.
    List, T., Bins, J., Vazquez, J., Fisher, R.: Performance evaluating the evaluator. In: Proc. IEEE Joint Workshop on Visual Surveillance and Performance Analysis of Video Surveillance and Tracking (2005)Google Scholar
  20. 20.
    Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–8. IEEE Computer Society, Citeseer (2007)CrossRefGoogle Scholar
  21. 21.
    Guo, C., Ma, Q., Zhang, L.: Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bolei Zhou
    • 1
    • 2
    • 3
  • Xiaodi Hou
    • 4
  • Liqing Zhang
    • 1
  1. 1.MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent SystemsShanghai Jiao Tong UniversityChina
  2. 2.Dept. of Computer Science and EngineeringShanghai Jiao Tong UniversityChina
  3. 3.Dept. of Information EngineeringThe Chinese University of Hong KongChina
  4. 4.Dept. of Computation and Neural SystemsCalifornia Institute of TechnologyChina

Personalised recommendations