Descriptor Learning Based on Fisher Separation Criterion for Texture Classification

  • Yimo Guo
  • Guoying Zhao
  • Matti Pietikäinen
  • Zhengguang Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6494)


This paper proposes a novel method to deal with the representation issue in texture classification. A learning framework of image descriptor is designed based on the Fisher separation criteria (FSC) to learn most reliable and robust dominant pattern types considering intra-class similarity and inter-class distance. Image structures are thus be described by a new FSC-based learning (FBL) encoding method. Unlike previous handcraft-design encoding methods, such as the LBP and SIFT, supervised learning approach is used to learn an encoder from training samples. We find that such a learning technique can largely improve the discriminative ability and automatically achieve a good tradeoff between discriminative power and efficiency. The commonly used texture descriptor: local binary pattern (LBP) is taken as an example in the paper, so that we then proposed the FBL-LBP descriptor. We benchmark its performance by classifying textures present in the Outex_TC_0012 database for rotation invariant texture classification, KTH-TIPS2 database for material categorization and Columbia-Utrecht (CUReT) database for classification under different views and illuminations. The promising results verify its robustness to image rotation, illumination changes and noise. Furthermore, to validate the generalization to other problems, we extend the application also to face recognition and evaluate the proposed FBL descriptor on the FERET face database. The inspiring results show that this descriptor is highly discriminative.


Face Recognition Training Image Pattern Type Local Binary Pattern Dominant Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2032–2047 (2009)CrossRefGoogle Scholar
  2. 2.
    Lowe, D.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  3. 3.
    Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision 73, 213–238 (2007)CrossRefGoogle Scholar
  4. 4.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29, 51–59 (1996)CrossRefGoogle Scholar
  5. 5.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Liao, S., Chung, C.S.: Texture classification by using advanced local binary patterns and spatial distribution of dominant patterns. In: International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 1221–1224 (2007)Google Scholar
  9. 9.
    Liao, S., Law, M., Chung, C.S.: Dominant local binary patterns for texture classification. IEEE Transactions on Image Processing 18, 1107–1118 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Schaffalitzky, F., Zisserman, A.: Viewpoint invariant texture matching and wide baseline stereo. In: International Conference on Computer Vision, vol. 2, pp. 636–643 (2001)Google Scholar
  11. 11.
    Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62, 61–81 (2005)CrossRefGoogle Scholar
  12. 12.
    Weszka, J., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Transactions on Systems, Man, and Cybernetics 6, 269–285 (1976)CrossRefzbMATHGoogle Scholar
  13. 13.
    Randen, T., Husoy, J.H.: Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 291–310 (1999)CrossRefGoogle Scholar
  14. 14.
    Mallat, S.G.: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693 (1989)CrossRefzbMATHGoogle Scholar
  15. 15.
    Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing 11, 1549–1560 (1995)CrossRefGoogle Scholar
  16. 16.
    Chellappa, R., Chatterjeey, S.: Classification of textures using gaussian markov random fields. IEEE Transactions on Acoustics, Speech, and Signal Processing 33, 959–963 (1985)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cross, G.R.: Markov random field texture models. Ph.D. dissertation, East Lansing, MI (1980)Google Scholar
  18. 18.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005)Google Scholar
  19. 19.
    Fisher, A.: The mathematical theory of probabilities. Macmillan, Basingstoke (1923)Google Scholar
  20. 20.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)zbMATHGoogle Scholar
  21. 21.
    Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorith. In: International Conference on Pattern Recognition, vol. 1, pp. 701–706 (2002)Google Scholar
  22. 22.
    Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation. In: International Conference on Computer Vision, vol. 2, pp. 1597–1604 (2005)Google Scholar
  23. 23.
    Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real world surfaces. ACM Transactions on Graphics 18, 1–34 (1999)CrossRefGoogle Scholar
  24. 24.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The feret database and evaluation procedure for face recognition algorithms. Image and Vision Computing 16, 295–306 (1998)CrossRefGoogle Scholar
  25. 25.
  26. 26.
  27. 27.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yimo Guo
    • 1
    • 2
  • Guoying Zhao
    • 1
  • Matti Pietikäinen
    • 1
  • Zhengguang Xu
    • 2
  1. 1.Machine Vision Group, Department of Electrical and Information EngineeringUniversity of OuluFinland
  2. 2.School of Information EngineeringUniversity of Science and TechnologyBeijingChina

Personalised recommendations