Skip to main content

A Linear Solution to 1-Dimensional Subspace Fitting under Incomplete Data

  • Conference paper
  • 3767 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6493))

Abstract

Computing a 1-dimensional linear subspace is an important problem in many computer vision algorithms. Its importance stems from the fact that maximizing a linear homogeneous equation system can be interpreted as subspace fitting problem. It is trivial to compute the solution if all coefficients of the equation system are known, yet for the case of incomplete data, only approximation methods based on variations of gradient descent have been developed.

In this work, an algorithm is presented in which the data is embedded in projective spaces. We prove that the intersection of these projective spaces is identical to the desired subspace. Whereas other algorithms approximate this subspace iteratively, computing the intersection of projective spaces defines a linear problem. This solution is therefore not an approximation but exact in the absence of noise. We derive an upper boundary on the number of missing entries the algorithm can handle. Experiments with synthetic data confirm that the proposed algorithm successfully fits subspaces to data even if more than 90% of the data is missing. We demonstrate an example application with real image sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, H., Rosenhahn, B.: Trajectory Reconstruction for Affine Structure-from-Motion by Global and Local Constraints. In: IEEE Computer Vision and Pattern Recognition (CVPR), Miami, Florida, USA (June 2009)

    Google Scholar 

  2. Aguiar, P., Xavier, J., Stosic, M.: Spectrally Optimal Factorization of Incomplete Matrices. In: IEEE Computer Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  3. Brand, M.: Incremental singular value decomposition of uncertain data with missing values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Buchanan, A., Fitzgibbon, A.: Damped Newton Algorithms for Matrix Factorization with Missing Data. In: IEEE Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, pp. 316–322 (2005)

    Google Scholar 

  5. Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Foundations of Computational Mathematics 9(6), 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, P., Suter, D.: Recovering the Missing Components in a Large Noisy Low-Rank Matrix: Application to SFM. IEEE Transactions on Pattern Analyis and Machine Intelligence 26(8), 1051–1063 (2004)

    Article  Google Scholar 

  8. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  9. Fazel, M.: Matrix Rank Minimization with Applications. PhD thesis, Dept. Electrical Engineering, Stanford University (March 2002)

    Google Scholar 

  10. Gabriel, K., Zamir, S.: Lower rank approximation of matrices by least squares with any choice of weights. Techonometrics 21(4), 489–498 (1979)

    Article  MATH  Google Scholar 

  11. Hartley, R., Schaffalizky, F.: PowerFactorization: 3D Reconstruction with Missing or Uncertain Data. In: Australia-Japan Advanced Workshop on Computer Vision (June 2002)

    Google Scholar 

  12. Heyden, A., Berthilsson, R., Sparr, G.: An Iterative Factorization Method for Projective Structure and Motion from Image Sequences. Image and Vision Computing 17(13), 981–991 (1999)

    Article  Google Scholar 

  13. Jacobs, D.W.: Linear fitting with missing data for structure-from-motion. Computer Vision and Image Understanding 82(1), 57–81 (2001)

    Article  MATH  Google Scholar 

  14. Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier Science Inc., New York (1996)

    MATH  Google Scholar 

  15. Mahamud, S., Hebert, M.: Iterative Projective Reconstruction from Multiple Views. In: IEEE Computer Vision and Pattern Recognition (CVPR), Hilton Head, SC, USA, pp. 430–437 (June 2000)

    Google Scholar 

  16. Marquez, M., Costeira, J.: Optimal Shape from Motion Estimation with Missing and Degenerate Data. In: IEEE Workshop on Application of Computer Vision (WACV), Copper Mountain, CO, USA (January 2008)

    Google Scholar 

  17. Ruhe, A.: Numerical computation of principal components when several observations are missing. Technical report, Dept. Information Processing, University of Umeda, Umeda, Sweden (April 1974)

    Google Scholar 

  18. Ruhe, A., Wedin, P.: Algorithms for separable nonlinear least squares problems. Society for Industrial and Applied Mathematics Review 22(3), 318–337 (1980)

    MathSciNet  MATH  Google Scholar 

  19. Sugaya, Y., Kanatani, K.: Extending interrupted feature point tracking for 3-D affine reconstruction. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 310–321. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factorization method. International Journal of Computer Vision 9(2), 137–154 (1992)

    Article  Google Scholar 

  21. Tsai, R.: A versatile camera calibration technique for high-accuracy 3-d machine vision metrology using off-the-shelf cameras and lenses. IEEE Transaction on Robotics and Automation 3(4), 323–344 (1987)

    Article  Google Scholar 

  22. Wiberg, T.: Computation of principal components when data are missing. In: Second Symp. on Computational Statistics, Berlin, Germany, pp. 229–236 (1976)

    Google Scholar 

  23. Wold, H.: Estimation of principal components and related models by iterative least squares. In: Krishnaiah (ed.) Multivariate Analysis, pp. 391–420 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ackermann, H., Rosenhahn, B. (2011). A Linear Solution to 1-Dimensional Subspace Fitting under Incomplete Data. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19309-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19308-8

  • Online ISBN: 978-3-642-19309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics