Skip to main content

A Direct Method for Estimating Planar Projective Transform

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6493))

Abstract

Estimating planar projective transform (homography) from a pair of images is a classical problem in computer vision. In this paper, we propose a novel algorithm for direct registering two point sets in \(\mathbb R^2\) using projective transform without using intensity values. In this very general context, there is no easily established correspondences that can be used to estimate the projective transform, and most of the existing techniques become either inadequate or inappropriate. While the planar projective transforms form an eight-dimensional Lie group, we show that for registering 2D point sets, the search space for the homographies can be effectively reduced to a three-dimensional space. To further improve on the running time without significantly reducing the accuracy of the registration, we propose a matching cost function constructed using local polynomial moments of the point sets and a coarse to fine approach. The resulting registration algorithm has linear time complexity with respect to the number of input points. We have validated the algorithm using points sets collected from real images. Preliminary experimental results are encouraging and they show that the proposed method is both efficient and accurate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  3. Nemeth, J., Domokos, C., Kato, Z.: Recovering planar homographies between 2d shapes. In: Proc. Int. Conf. on Computer Vision, pp. 889–892 (2009)

    Google Scholar 

  4. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. van Gool, L., Moons, T., Pauwels, E., Oosterlinck, A.: Vision and Lies approach to invariance. Image and Vision Computing 13, 259–277 (1995)

    Article  Google Scholar 

  6. Flusser, J., Suk, T.: Projective moment invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1364–1367 (2004)

    Article  Google Scholar 

  7. Domokos, C., Kato, Z., Francos, J.M.: Parametric estimation of affine deformations of binary images. In: Proc. of Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 889–892 (2008)

    Google Scholar 

  8. Baird, H.: Model-based image matching using location. MIT Press, Cambridge (1984)

    MATH  Google Scholar 

  9. Besl, P., Jain, R.: Three dimensional object recognition. ACM Computing Surveys 17, 75–145 (1985)

    Article  Google Scholar 

  10. Grimson, E.: Object recognition by computer: The role of geometric constraints. MIT Press, Cambridge (1990)

    Google Scholar 

  11. Hinton, G., Williams, C., Revow, M.: Adaptive elastic models for hand-printed character recognition. In: Advances in Neural Information Systems, pp. 512–519 (1992)

    Google Scholar 

  12. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 850–863 (1993)

    Article  Google Scholar 

  13. Feldmar, J., Ayache, N.: Rigid, affine and locally affine registration of free-form surfaces. Int. J. Computer Vision 18, 99–119 (1996)

    Article  Google Scholar 

  14. Metaxas, D., Koh, E., Badler, N.: Multi-level shape representation using global deformation and locally adaptive finite elements. Int. J. Computer Vision 25, 49–61 (1997)

    Article  Google Scholar 

  15. Hofmann, T., Buhmann, J.: Pairwise data clustering by deterministic annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 1–14 (1997)

    Article  Google Scholar 

  16. Cross, A., Hancock, E.: Graph matching with a dual-step EM algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 1236–1253 (1998)

    Article  Google Scholar 

  17. Gold, S., Rangarajan, A., Liu, C., Pappu, S., Mjolsness, E.: New algorithms for 2d and 3d point matching: pose estimation and correspondence. Pattern Recognition 31, 1019–1031 (1998)

    Article  Google Scholar 

  18. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89, 114–141 (2003)

    Article  MATH  Google Scholar 

  19. Cao, Y., Miller, M., Winlow, R., Younes, L.: Large deformation diffeomorphic metric mapping of vector fields. IEEE Trans. on Med. Img. 24, 1216–1230 (2005)

    Article  Google Scholar 

  20. Ho, J., Peter, A., Rangarajan, A., Yang, M.H.: An algebraic approach to affine registration of point sets. In: Proc. Int. Conf. on Computer Vision, pp. 1335–1340 (2009)

    Google Scholar 

  21. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 850–863 (1993)

    Google Scholar 

  22. Ridler, T., Calvard, S.: Picture thresholding using an iterative selection method. SMC 8, 629–632 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chi, YT., Ho, J., Yang, MH. (2011). A Direct Method for Estimating Planar Projective Transform. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19309-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19308-8

  • Online ISBN: 978-3-642-19309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics