Skip to main content

Planar Affine Rectification from Change of Scale

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6495))

Included in the following conference series:

Abstract

A method for affine rectification of a plane exploiting knowledge of relative scale changes is presented. The rectifying transformation is fully specified by the relative scale change at three non-collinear points or by two pairs of points where the relative scale change is known; the relative scale change between the pairs is not required. The method also allows homography estimation between two views of a planar scene from three point-with-scale correspondences.

The proposed method is simple to implement and without parameters; linear and thus supporting (algebraic) least squares solutions; and general, without restrictions on either the shape of the corresponding features or their mutual position.

The wide applicability of the method is demonstrated on text rectification, detection of repetitive patterns, texture normalization and estimation of homography from three point-with-scale correspondences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, P., Mirmehdi, M.: Rectifying perspective views of text in 3d scenes using vanishing points. Pattern Recognition 36, 2673–2686 (2003)

    Article  Google Scholar 

  2. Myers, G.K., Bolles, R.C., Luong, Q.T., Herson, J.A., Aradhye, H.: Rectification and recognition of text in 3-d scenes. IJDAR 7, 147–158 (2005)

    Article  Google Scholar 

  3. Schaffalitzky, F., Zisserman, A.: Planar grouping for automatic detection of vanishing lines and points. Image and Vision Computing 18, 647–658 (2000)

    Article  Google Scholar 

  4. Ribeiro, E., Hancock, E.R.: 3-d planar orientation from texture: Estimating vanishing point from local spectral analysis. In: Carter, J.N., Nixon, M.S. (eds.) BMVC, British Machine Vision Association (1998)

    Google Scholar 

  5. Lelandais, S., Boutté, L., Plantier, J.: Shape from texture: Local scales and vanishing line computation to improve results for macrotextures. Int. J. Image Graphics 5, 329–350 (2005)

    Article  Google Scholar 

  6. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. CACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004) ISBN: 0521540518

    Book  MATH  Google Scholar 

  8. Criminisi, A., Zisserman, A.: Shape from texture: homogeneity revisited. In: Proc. BMVC, UK, pp. 82–91 (2000)

    Google Scholar 

  9. Witkin, A.: Recovering surface shape and orientation from texture. Artificial Intelligence 17, 17–45 (1981)

    Article  Google Scholar 

  10. Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  11. Rasmussen, C.: Texture-based vanishing point voting for road shape estimation. In: Proc. BMVC (2004)

    Google Scholar 

  12. Ribeiro, E., Hancock, E.: Estimating the perspective pose of texture planes using spectral analysis on the unit sphere. Pattern Recognition 35, 2141–2163 (2002)

    Article  MATH  Google Scholar 

  13. Ohta, Y., Maenobu, K., Sakai, T.: Obtaining surface orientation from texels under perspective projection. In: IJCAL, Vancouver, Canada, pp. 746–751 (1981)

    Google Scholar 

  14. Aloimonos, Y.: Shape from texture. Biological Cybernetics 58, 345–360 (1988)

    Article  MATH  Google Scholar 

  15. Hartley, R.: Chirality. IJCV 26, 41–61 (1998)

    Article  Google Scholar 

  16. Hartley, R.: In defence of the 8-point algorithm. In: ICC, vol. 95, pp. 1064–1070 (1995)

    Google Scholar 

  17. Obdržálek, Š., Matas, J.: Object recognition using local affine frames on distinguished regions. In: Proc. BMVC, pp. 113–122 (2002)

    Google Scholar 

  18. Torr, P.H.S.: Outlier Detection and Motion Segmentation. PhD thesis, Dept. of Engineering Science, University of Oxford (1995)

    Google Scholar 

  19. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. IJCV 65, 43–72 (2005)

    Article  Google Scholar 

  20. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  21. Chum, O., Matas, J., Obdržálek, Š.: Enhancing RANSAC by generalized model optimization. In: Proc. of the ACCV, vol. 2, pp. 812–817 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chum, O., Matas, J. (2011). Planar Affine Rectification from Change of Scale. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19282-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19281-4

  • Online ISBN: 978-3-642-19282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics