Skip to main content

Probabilistic 3D Object Recognition Based on Multiple Interpretations Generation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6495))

Abstract

We present a probabilistic 3D object recognition approach using multiple interpretations generation in cluttered domestic environment. How to handle pose ambiguity and uncertainty is the main challenge in most recognition systems. In our approach, invariant 3D lines are employed to generate the pose hypotheses as multiple interpretations, especially ambiguity from partial occlusion and fragment of 3D lines are taken into account. And the estimated pose is represented as a region instead of a point in pose space by considering the measurement uncertainties. Then, probability of each interpretation is computed reliably using Bayesian principle in terms of both likelihood and unlikelihood. Finally, fusion strategy is applied to a set of top ranked interpretations, which are further verified and refined to make more accurate pose estimation in real time. The experimental results support the potential of the proposed approach in the real cluttered domestic environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts, L.G.: Machine perception of three-dimensional solids. In: Tipett, J.T. (ed.) Optical and Electrooptical Information Processing, pp. 159–197. MIT Press, Cambridge (1965)

    Google Scholar 

  2. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  3. Beis, J.S., Lowe, D.G.: Indexing without invariants in 3d object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 1000–1015 (1999)

    Article  Google Scholar 

  4. Costa, M.S., Shapiro, L.G.: 3d object recognition and pose with relational indexing. Comput. Vis. Image Underst. 79, 364–407 (2000)

    Article  MATH  Google Scholar 

  5. David, P., Dementhon, D., Duraiswami, R., Samet, H.: Softposit: Simultaneous pose and correspondence determination. International Journal of Computer Vision 59, 259–284 (2004)

    Article  MATH  Google Scholar 

  6. Vicente, M.A., Hoyer, P.O., Hyvarinen, A.: Equivalence of some common linear feature extraction techniques for appearance-based object recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 896–900 (2007)

    Article  Google Scholar 

  7. Bicego, M., Castellani, U., Murino, V.: A hidden markov model approach for appearance-based 3d object recognition. Pattern Recognition Letters 26, 2588–2599 (2005)

    Article  Google Scholar 

  8. Cyr, C.M., Kimia, B.B.: A similarity-based aspect-graph approach to 3d object recognition. International Journal of Computer Vision 57, 5–22 (2004)

    Article  Google Scholar 

  9. Min, S., Hao, S., Savarese, S., Li, F.F.: A multi-view probabilistic model for 3d object classes. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1247–1254 (2009)

    Google Scholar 

  10. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 433–449 (1999)

    Article  Google Scholar 

  11. Frome, A., Huber, D., Kolluri, R., Bulow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3d model retrieval. In: IEEE International Conference on Shape Modeling and Applications, SMI 2008, pp. 93–102 (2008)

    Google Scholar 

  13. Shimshoni, I., Ponce, J.: Probabilistic 3d object recognition. International Journal of Computer Vision 36, 51–70 (2000)

    Article  Google Scholar 

  14. David, P., DeMenthon, D.: Object recognition in high clutter images using line features. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1581–1588 (2005)

    Google Scholar 

  15. Zhaojin, L., Seungmin, B., Sukhan, L.: Robust 3d line extraction from stereo point clouds. In: IEEE Conference on Robotics, Automation and Mechatronics, pp. 1–5 (2008)

    Google Scholar 

  16. Bregler, C., Malik, J.: Tracking people with twists and exponential maps. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1998, pp. 8–15 (1998)

    Google Scholar 

  17. Genest, C., Zidek, J.V.: Combining probability distributions: A critique and an annotated bibliography. Statistical Science 1, 114–135 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, Z., Lee, S., Kim, H. (2011). Probabilistic 3D Object Recognition Based on Multiple Interpretations Generation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19282-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19281-4

  • Online ISBN: 978-3-642-19282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics