Ranking and Drawing in Subexponential Time

  • Henning Fernau
  • Fedor V. Fomin
  • Daniel Lokshtanov
  • Matthias Mnich
  • Geevarghese Philip
  • Saket Saurabh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)


In this paper we obtain parameterized subexponential-time algorithms for p -Kemeny Aggregation (p-KAGG) — a problem in social choice theory — and for p -One-Sided Crossing Minimization (p-OSCM) – a problem in graph drawing (see the introduction for definitions). These algorithms run in time \(\mathcal{O}^{*}(2^{\mathcal{O}(\sqrt{k}{\rm log} k)})\), where k is the parameter, and significantly improve the previous best algorithms with running times \(\cal{O}^{*}\)(1.403 k ) and \(\cal{O}^{*}\)(1.4656 k ), respectively. We also study natural “above-guarantee” versions of these problems and show them to be fixed parameter tractable. In fact, we show that the above-guarantee versions of these problems are equivalent to a weighted variant of p -Directed Feedback Arc Set. Our results for the above-guarantee version of p-KAGG reveal an interesting contrast. We show that when the number of “votes” in the input to p-KAGG is odd the above guarantee version can still be solved in time \(\mathcal{O}^{*}(2^{\mathcal{O}(\sqrt{k}{\rm log} k)})\), while if it is even then the problem cannot have a subexponential time algorithm unless the exponential time hypothesis fails (equivalently, unless FPT=M[1]).


Kemeny Aggregation One-Sided Crossing Minimization Parameterized Complexity Subexponential-time Algorithms Social Choice Theory Graph Drawing Directed Feedback Arc Set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Ranking and clustering. J.ACM 55(5), 23:1–23:27 (2008)Google Scholar
  2. 2.
    Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential speedup for planar graph problems. Journal of Algorithms 52, 26–56 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bachmaier, C.: A radial adaptation of the Sugiyama framework for visualizing hierarchical information. IEEE Transactions on Visualization and Computer Graphics 13(3), 583–594 (2007)CrossRefGoogle Scholar
  5. 5.
    Bartholdi III, J., Tovey, C.A., Trick, M.A.: Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare 6, 157–165 (1989)CrossRefzbMATHGoogle Scholar
  6. 6.
    Betzler, N., Fellows, M.R., Guo, J., Niedermeier, R., Rosamond, F.A.: Fixed-parameter algorithms for Kemeny scores. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 60–71. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Biedl, T.C., Brandenburg, F.-J., Deng, X.: Crossings and permutations. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Çakiroglu, O.A., Erten, C., Karatas, Ö., Sözdinler, M.: Crossing minimization in weighted bipartite graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 122–135. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. JACM 55(5), 21:1–21:19 (2008)Google Scholar
  10. 10.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. In: Proceedings of SODA 2004, pp. 823–832. ACM, New York (2004)Google Scholar
  11. 11.
    Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 15–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Dujmović, V., Fellows, M.R., Hallett, M., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F.A., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach to 2-layer planarization. Algorithmica 45, 159–182 (2006)CrossRefzbMATHGoogle Scholar
  13. 13.
    Dujmović, V., Fellows, M.R., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F.A., Whitesides, S., Wood, D.R.: On the parameterized complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-sided crossing minimization revisited. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 332–344. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-sided crossing minimization revisited. Journal of Discrete Algorithms 6, 313–323 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Dujmović, V., Whitesides, S.: An efficient fixed parameter tractable algorithm for 1-sided crossing minimization. Algorithmica 40, 15–32 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation revisited. Manuscript available at,
  18. 18.
    Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994)CrossRefzbMATHGoogle Scholar
  19. 19.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  20. 20.
    Forster, M.: A fast and simple heuristic for constrained two-level crossing reduction. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 206–216. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Guénoche, A., Vandeputte-Riboud, B., Denis, J.: Selecting varieties using a series of trials and a combinatorial ordering method. Agronomie 14, 363–375 (1994)CrossRefGoogle Scholar
  22. 22.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Communications, pp. 85–103 (1972)Google Scholar
  24. 24.
    Karpinsky, M., Schudy, W.: Faster algorithms for feedback arc set tournament, kemeny rank aggregation and betweenness tournament. Accepted at ISAAC (2010)Google Scholar
  25. 25.
    Kemeny, J.: Mathematics without numbers. Daedalus 88, 571–591 (1959)Google Scholar
  26. 26.
    Kemeny, J., Snell, J.: Mathematical models in the social sciences. Blaisdell (1962)Google Scholar
  27. 27.
    Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Proceedings of STOC 2007, pp. 95–103. ACM, New York (2007)Google Scholar
  28. 28.
    Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. Journal of Computer and System Sciences 75(2), 137–153 (2009)CrossRefzbMATHGoogle Scholar
  29. 29.
    Muñoz, X., Unger, W., Vrt’o, I.: One sided crossing minimization is NP-hard for sparse graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 115–123. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Nagamochi, H.: An improved bound on the one-sided minimum crossing number in two-layered drawings. Discrete and Computational Geometry 33, 569–591 (2005)CrossRefzbMATHGoogle Scholar
  31. 31.
    Simjour, N.: Improved parameterized algorithms for the Kemeny aggregation problem. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 312–323. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Systems Man Cybernet. 11(2), 109–125 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Henning Fernau
    • 1
  • Fedor V. Fomin
    • 2
  • Daniel Lokshtanov
    • 2
  • Matthias Mnich
    • 3
  • Geevarghese Philip
    • 4
  • Saket Saurabh
    • 4
  1. 1.Universität Trier FB 4—Abteilung InformatikTrierGermany
  2. 2.Department of InformaticsUniversity of BergenBergenNorway
  3. 3.Eindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations