Complexity of Locally Injective Homomorphism to the Theta Graphs

  • Bernard Lidický
  • Marek Tesař
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6460)


A Theta graph is a multigraph which is a union of at least three internally disjoint paths that have the same two distinct end vertices. In this extended abstract we show full computational complexity characterization of the problem of deciding the existence of a locally injective homomorphism from an input graph G to any fixed Theta graph.


computational complexity locally injective homomorphism Theta graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combinatorics of covering finite complexes. Australian Journal of Combinatorics 4, 103–112 (1991)zbMATHGoogle Scholar
  2. 2.
    Bodlaender, H.L.: The classification of coverings of processor networks. Journal of Parallel Distributed Computing 6, 166–182 (1989)CrossRefGoogle Scholar
  3. 3.
    Fiala, J.: NP completeness of the edge precoloring extension problem on bipartite graphs. Journal of Graph Theory 43, 156–160 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fiala, J., Kratochvíl, J.: Complexity of partial covers of graphs. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 537–549. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discussiones Mathematicae Graph Theory 22, 89–99 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fiala, J., Kratochvíl, J.: Locally injective graph homomorphism: Lists guarantee dichotomy. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 15–26. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Fiala, J., Kratochvíl, J., Pór, A.: On the computational complexity of partial covers of Theta graphs. Discrete Applied Mathematics 156, 1143–1149 (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fiala, J., Paulusma, D.: The computational complexity of the role assignment problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 817–828. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Hell, P., Nešetřil, J.: On the complexity of H-colouring. Journal of Combinatorial Theory, Series B 48, 92–110 (1990)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. Journal of Combinatorial Theory B 71, 1–16 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering directed multigraphs I. colored directed multigraphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 242–257. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Kratochvíl, J., Proskurowski, A., Telle, J.A.: Complexity of graph covering problems. Nordic Journal of Computing 5, 173–195 (1998)zbMATHGoogle Scholar
  13. 13.
    Kristiansen, P., Telle, J.A.: Generalized H-coloring of graphs. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 456–466. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bernard Lidický
    • 1
  • Marek Tesař
    • 1
  1. 1.Department of Applied MathematicsCharles UniversityPragueCzech Republic

Personalised recommendations