Skip to main content

Micropolar Shells as Two-dimensional Generalized Continua Models

  • Chapter
  • First Online:
Mechanics of Generalized Continua

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 7))

Abstract

Using the direct approach the basic relations of the nonlinear micropolar shell theory are considered. Within the framework of this theory the shell can be considered as a deformable surface with attached three unit orthogonal vectors, so-called directors. In other words the micropolar shell is a two-dimensional (2D) Cosserat continuum or micropolar continuum. Each point of the micropolar shell has three translational and three rotational degrees of freedom as in the rigid body dynamics. In this theory the rotations are kinematically independent on translations. The interaction between of any two parts of the shell is described by the forces and moments only. So at the shell boundary six boundary conditions have to be given. In contrast to Kirchhoff-Love or Reissner’s models of shells the drilling moment acting on the shell surface can be taken into account. In the paper we derive the equilibrium equations of the shell theory using the principle of virtual work. The strain measures are introduced on the base of the principle of frame indifference. The boundary-value static and dynamic problems are formulated in Lagrangian and Eulerian coordinates. In addition, some variational principles are presented. For the general constitutive equations we formulate some constitutive restrictions, for example, the Coleman-Noll inequality, the Hadamard inequality, etc. Finally, we discuss the equilibrium of shells made of materials undergoing phase transformations, such as martensitic transformations, and formulate the compatibility conditions on the phase interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeyaratne R, Knowles J.K (2006) Evolution of Phase Transitions. A Continuum Theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Agrawal A, Steigmann D.J (2008) Coexistent fluid-phase equilibria in biomembranes with bending elasticity. Journal of Elasticity 93(1):63–80

    Article  Google Scholar 

  3. Altenbach H, Eremeyev V.A, Lebedev L.P, Rendón L.A (2010) Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech 80(3):217–227

    Article  Google Scholar 

  4. Altenbach H, Zhilin P.A (1988) A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki (Advances in Mechanics) 11(4):107–148

    Google Scholar 

  5. Altenbach J, Altenbach H, Eremeyev V.A (2010) On generalized Cosserat-type theories of plates and shells. A short review and bibliography. Arch. Appl. Mech. 80(1):73–92

    Article  Google Scholar 

  6. Berezovski A, Engelbrecht J, Maugin G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, New Jersey et al. (2008)

    Google Scholar 

  7. Bhattacharya K (2003) Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect. Oxford University Press, Oxford

    Google Scholar 

  8. Bhattacharya K, James R.D (1999) A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 36:531–576

    Article  Google Scholar 

  9. Boulbitch A.A (1999) Equations of heterophase equilibrium of a biomembrane. Archive of Applied Mechanics 69(2):83–93

    Article  Google Scholar 

  10. Chróścielewski J, Makowski J, Pietraszkiewicz W (2004) Statics and Dynamics of Multyfolded Shells. Nonlinear Theory and Finite Elelement Method. Wydawnictwo IPPT PAN, Warszawa

    Google Scholar 

  11. Chróścielewski J, Pietraszkiewicz W, Witkowski W (2010) On shear correction factors in the non-linear theory of elastic shells. Int. J. Solids Struct. 47(25–26):3537–3545

    Article  Google Scholar 

  12. Chróścielewski J, Witkowski W (2010) On some constitutive equations for micropolar plates. ZAMM 90(1):53–64

    Article  Google Scholar 

  13. Cosserat, E., Cosserat, F.: Théorie des Corps Déformables. Hermann Editeurs, Paris (1909) (Reprint, Gabay, Paris, 2008)

    Google Scholar 

  14. Courant R, Hilbert D (1991) Methods of Mathematical Physics, Vol.~1. Wiley, New York

    Google Scholar 

  15. Eremeyev V.A (2005) Acceleration waves in micropolar elastic media. Doklady Physics 50(4):204–206

    Article  CAS  Google Scholar 

  16. Eremeyev V.A (2005) Nonlinear micropolar shells: theory and applications. In: Pietraszkiewicz W, Szymczak C (eds.) Shell Structures: Theory and Applications. Taylor & Francis, London pp. 11–18

    Google Scholar 

  17. Eremeyev V.A, Pietraszkiewicz W (2004) The non-linear theory of elastic shells with phase transitions. J. Elasticity 74(1):67–86

    Article  Google Scholar 

  18. Eremeyev V.A, Pietraszkiewicz W (2006) Local symmetry group in the general theory of elastic shells. J. Elasticity 85(2):125–152

    Article  Google Scholar 

  19. Eremeyev V.A, Pietraszkiewicz W (2009) Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1):41–67

    Google Scholar 

  20. Eremeyev V.A, Pietraszkiewicz W (2010) On tension of a two-phase elastic tube. In: W. Pietraszkiewicz, I. Kreja (eds.) Shell Structures. Theory and Applications. Vol. 2.. CRC Press, Boca Raton pp. 63–66

    Google Scholar 

  21. Eremeyev V.A, Zubov L.M (1994) On the stability of elastic bodies with couple stresses (in Russian). Izv. RAN. Mekanika Tvedogo Tela (Mechanics of Solids) (3):181–190

    Google Scholar 

  22. Eremeyev V.A, Zubov L.M (2007) On constitutive inequalities in nonlinear theory of elastic shells. ZAMM 87(2):94–101

    Article  Google Scholar 

  23. Eremeyev V.A, Zubov L.M (2008) Mechanics of Elastic Shells (in Russian). Nauka, Moscow

    Google Scholar 

  24. Ericksen J.L, Truesdell C (1958) Exact theory of stress and strain in rods and shells. Arch. Rat. Mech. Analysis 1(1):295–323

    Article  Google Scholar 

  25. Eringen A.C (1999) Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York

    Google Scholar 

  26. Eringen A.C (2001) Microcontinuum Field Theory. II. Fluent Media. Springer, New York

    Google Scholar 

  27. Fichera G (1972) Existence theorems in elasticity. In: S. Flügge (ed.) Handbuch der Physik, vol. VIa/2. Springer, Berlin pp. 347–389

    Google Scholar 

  28. Gibbs, J.W.: On the equilibrium of heterogeneous substances. In: The Collected Works of J. Willard Gibbs. pp. 53–353. Longmans, Green & Co, New York (1928)

    Google Scholar 

  29. Grinfeld,M (1991) Thermodynamics Methods in the Theory of Heterogeneous Systems. Longman, Harlow

    Google Scholar 

  30. Gurtin M.E (2000) Configurational Forces as Basic Concepts of Continuum Physics. Springer-Verlag, Berlin

    Google Scholar 

  31. He Y.J, Sun Q (2009) Scaling relationship on macroscopic helical domains in NiTi tubes. Int. J. Solids Struct. 46(24):4242–4251

    Article  CAS  Google Scholar 

  32. He Y.J, Sun Q (2010) Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates. Int. J. Mech. Sci. 52(2):198–211

    Article  Google Scholar 

  33. He Y.J, Sun Q (2010) Rate-dependent domain spacing in a stretched NiTi strip. Int. J. Solids Struct. 47(20):2775–2783

    Article  CAS  Google Scholar 

  34. James R.D, Rizzoni R (2000) Pressurized shape memory thin films. J. Elasticity 59:399–436

    Article  Google Scholar 

  35. Kienzler R, Herrman G (2000) Mechanics in Material Space with Applications to Defect and Fracure Mechanics. Springer-Verlag, Berlin

    Google Scholar 

  36. Lebedev L.P, Cloud M.J, Eremeyev V.A (2010) Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey

    Book  Google Scholar 

  37. Li Z.Q, Sun Q (2002) The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. Int. J. Plasticity 18(11):1481–1498

    Article  CAS  Google Scholar 

  38. Libai A, Simmonds J.G (1983) Nonlinear elastic shell theory. Adv. Appl. Mech. 23:271–371

    Article  Google Scholar 

  39. Libai A, Simmonds J.G (1998) The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Lions J.L, Magenes E (1968) Problèmes aux limites non homogènes et applications. Dunod, Paris

    Google Scholar 

  41. Lurie A.I (2001) Analytical Mechanics. Foundations of Engineering Mechanics. Springer, Berlin

    Google Scholar 

  42. Lurie A.I (2005) Theory of Elasticity. Foundations of Engineering Mechanics. Springer, Berlin

    Google Scholar 

  43. Maugin G.A (1993) Material Inhomogeneities in Elasticity. Chapman Hall, London

    Google Scholar 

  44. Maugin G.A (2011) A historical perspective of generalized continuum mechanics. In: H. Altenbach, V.I. Erofeev, G.A. Maugin (eds.) Mechanics of Generalized Continua. From the Micromechanical Basics to Engineering Applications. Springer, Berlin

    Google Scholar 

  45. Maugin, G.A., Metrikine, A.V. : (eds.): Mechanics of Generalized Continua: One hundred years after the Cosserats. Springer, New York (2010)

    Google Scholar 

  46. Miyazaki, S., Fu, Y.Q., Huang, W.M. (eds.): Thin Film Shape Memory Alloys: Fundamentals and Device Applications. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  47. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon-Press, Oxford et al. (1986)

    Google Scholar 

  48. Pietraszkiewicz W (1979) Consistent second approximation to the elastic strain energy of a shell. ZAMM 59:206–208

    Google Scholar 

  49. Pietraszkiewicz, W.: Finite Rotations and Langrangian Description in the Non-linear Theory of Shells. Polish Sci. Publ, Warszawa-Poznań (1979)

    Google Scholar 

  50. Pietraszkiewicz W (1989) Geometrically nonlinear theories of thin elastic shells. Uspekhi Mechaniki (Advances in Mechanics) 12(1):51–130

    Google Scholar 

  51. Pietraszkiewicz W (2001) Teorie nieliniowe powłok. In: C. Woźniak (ed.) Mechanika spre\(\dot{\hbox{z}}\)ystych płyt i powłok. PWN, Warszawa pp. 424–497

    Google Scholar 

  52. Pietraszkiewicz W, Eremeyev V.A (2009) On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46:774–787

    Article  Google Scholar 

  53. Pietraszkiewicz W, Eremeyev V.A (2009) On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. Int. J. Solids Struct. 46(11–12):2477–2480

    Article  Google Scholar 

  54. Pietraszkiewicz W, Eremeyev V.A, Konopińska V (2007) Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM 87(2):150–159

    Article  Google Scholar 

  55. Reissner E (1974) Linear and nonlinear theory of shells. In: Y.C. Fung, E.E. Sechler (eds.) Thin Shell Structures. Prentice-Hall, Englewood Cliffs, NJ pp. 29–44

    Google Scholar 

  56. Truesdell C (1984) Rational Thermodynamics, 2nd edn. Springer, New York

    Google Scholar 

  57. Truesdell C (1991) A First Course in Rational Continuum Mechanics, 2nd edn. Academic Press, New York

    Google Scholar 

  58. Truesdell C, Noll, W (1965) The nonlinear field theories of mechanics. In: S. Flügge (ed.) Handbuch der Physik, Vol. III/3. Springer, Berlin pp. 1–602

    Google Scholar 

  59. Zhilin P.A (1976) Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12:635 – 648

    Article  Google Scholar 

  60. Zubov L.M (1997) Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altenbach, H., Eremeyev, V.A., Lebedev, L.P. (2011). Micropolar Shells as Two-dimensional Generalized Continua Models. In: Altenbach, H., Maugin, G., Erofeev, V. (eds) Mechanics of Generalized Continua. Advanced Structured Materials, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19219-7_2

Download citation

Publish with us

Policies and ethics