Skip to main content

Cahn-Hilliard Generalized Diffusion Modeling Using the Natural Element Method

  • Chapter
  • First Online:
  • 1619 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 7))

Abstract

In this work, we present an application of two versions of the natural element method (NEM) to the Cahn-Hilliard equation. The Cahn-Hilliard equation is a nonlinear fourth order partial differential equation, describing phase separation of binary mixtures. Numerical solutions requires either a two field formulation with C 0 continuous shape functions or a higher order C 1 continuous approximations to solve the fourth order equation directly. Here, the C 1 NEM, based on Farin’s interpolant is used for the direct treatment of the second order derivatives, occurring in the weak form of the partial differential equation. Additionally, the classical C 0 continuous Sibson interpolant is applied to a reformulation of the equation in terms of two coupled second order equations. It is demonstrated that both methods provide similar results, however the C 1 continuous version needs fewer degrees of freedom to capture the contour of the phase boundaries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cahn, JW.: Free energy of a non uniform system ii: thermodynamic basis. J. Chem. Phys. 30, 1121–1124 (1959)

    Article  CAS  Google Scholar 

  2. Falk, F.: Cahn-Hilliard theory and irreversible thermodynamics. J. Non-Equilib. Thermodyn. 17(1), 53–65 (1992)

    Article  Google Scholar 

  3. Dolcetta, IC., Vita, SF., March, R.: Area preserving curve shortening flows: from phase transitions to image processing. Interfaces Free Boundaries 4(4), 325–343 (2002)

    Article  Google Scholar 

  4. Kuhl, E., Schmid, DW.: Computational modeling of mineral unmixing and growth- an application of the Cahn-Hilliard equation. Comput. Mech. 39, 439–451 (2007)

    Article  Google Scholar 

  5. Khain, E., Sander, LW.: Generalized Cahn-Hilliard equation for biological applications. Phys. Rev. Lett. E 77(5), 1–7 (2008)

    Google Scholar 

  6. Wu, XF., Dzenis, WA.: Phase-field modeling of the formation of lamellar nanostructures in diblock copolymer thin film under inplanar electric field. Phys. Rev. Lett. E 77(3,4), 1–10 (2008)

    Google Scholar 

  7. Ostwald, W.: Ăśber die vermeintliche Isometrie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z. Phys. Chem. 6, 495–503 (1900)

    Google Scholar 

  8. Rajagopal, A., Fischer, P., Kuhl, E., P. Steinmann, P.: Natural element analysis of the Cahn-Hilliard phase-field model ÂComput. Mech. 46, 471–493 (2010)

    Google Scholar 

  9. Stogner, RH., Carey, GF., Murray, BT.: Approximation of Cahn-Hilliard diffuse interface models using parallel adaptive mesh refinement and coarsening with \(C^1\) elements. Int. J. Numer. Methods Eng. 76, 636–661 (2008)

    Google Scholar 

  10. Gomez, H., Calo, VM., Bazilevs, Y., Hughes, TJR.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Meth. Appl. Mech. Eng. 197, 4333–4352 (2008)

    Article  Google Scholar 

  11. Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous galerkin method for Cahn-Hilliard equation. J. Comput. Phys 218, 860–877 (2006)

    Article  Google Scholar 

  12. Elliott, CM.: French DA. A non-conforming finite element method for the two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989)

    Google Scholar 

  13. Ubachs, RLJM., Schreurs, RJG., Geers, MGD.: A nonlocal diffuse interface model for microstructure evolution in tin-lead solder. J. Mech. Phys. Solids 52(8), 1763–1792 (2004)

    Article  CAS  Google Scholar 

  14. Farin, G.: Surfaces over Dirichlet tessellations. Comp. Aided Geom. D. 7, 281–292 (1990)

    Article  Google Scholar 

  15. Fischer, P., Mergheim0, J., Steinmann, P.: On the \(C^1\) continuous discretization of nonlinear gradient elasticity: a comparison of NEM and FEM based on Bernstein-Bezier patches. Int. J. Numer. Methods Eng. 82(10), 1282–1307 (2010)

    Google Scholar 

  16. Sukumar, N., Moran, B.: \(C^1\) natural neighbor interpolant for partial differential equations. Numer. Meth. Part. D. E. 15, 417–447 (1999)

    Google Scholar 

  17. Sibson, R.: A vector identity for the Dirichlet tessellation. Math. Proc. Cambridge 87, 151–153 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, P., Rajagopal, A., Kuhl, E., Steinmann, P. (2011). Cahn-Hilliard Generalized Diffusion Modeling Using the Natural Element Method. In: Altenbach, H., Maugin, G., Erofeev, V. (eds) Mechanics of Generalized Continua. Advanced Structured Materials, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19219-7_16

Download citation

Publish with us

Policies and ethics