Skip to main content

Opportunistic Packet Scheduling in Body Area Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 6567))

Abstract

Significant research efforts are being devoted to Body Area Networks (BAN) due to their potential for revolutionizing healthcare practices. Energy-efficiency and communication reliability are critically important for these networks. In an experimental study with three different mote platforms, we show that changes in human body shadowing as well as those in the relative distance and orientation of nodes caused by the common human body movements can result in significant fluctuations in the received signal strength within a BAN. Furthermore, regular movements, such as walking, typically manifest in approximately periodic variations in signal strength. We present an algorithm that predicts the signal strength peaks and evaluate it on real-world data. We present the design of an opportunistic MAC protocol, named BANMAC, that takes advantage of the periodic fluctuations of the signal strength to achieve high reliability even with low transmission power.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In: SenSys 2006: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 307–320. ACM, New York (2006)

    Google Scholar 

  2. Cai, J., Cheng, S., Huang, C.: MAC channel model for WBAN. Tech. Rep. 15-09-0562-00-0006, IEEE P802.15 (July 2009)

    Google Scholar 

  3. Chen, K., Muhlethaler, P.: A scheduling algorithm for tasks described by time value function. Real-Time Syst. 10(3), 293–312 (1996)

    Article  Google Scholar 

  4. Chipcon Corporation: CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver (April 2002), http://www.ti.com/lit/gpn/cc2420

  5. van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC protocol for wireless sensor networks. In: SenSys 2003: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, pp. 171–180. ACM, New York (2003)

    Google Scholar 

  6. Davenport, D., Ross, F., Deb, B.: Wireless propagation and coexistence of medical body sensor networks for ambulatory patient monitoring. In: International Workshop on Wearable and Implantable Body Sensor Networks, pp. 109–113. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  7. El-Hoiydi, A., Decotignie, J.D.: Low power downlink MAC protocols for infrastructure wireless sensor networks. Mob. Netw. Appl. 10(5), 675–690 (2005)

    Article  Google Scholar 

  8. Gaertner, G., ONuallain, E., Butterly, A., Singh, K., Cahill, V.: 802.11 link quality and its prediction – an experimental study. In: Niemegeers, I., de Groot, S.H. (eds.) PWC 2004. LNCS, vol. 3260, pp. 609–611. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Ghaddar, M., Talbi, L., Denidni, T.A.: Human body modelling for prediction of effect of people on indoor propagation channel. Electronics Letters 40(25), 1592–1594 (2004)

    Article  Google Scholar 

  10. Guerra, R., Fohler, G.: A gravitational task model with arbitrary anchor points for target sensitive real-time applications. Real-Time Syst. 43(1), 93–115 (2009)

    Article  MATH  Google Scholar 

  11. Halkes, G.P., Van Dam, T., Langendoen, K.G.: Comparing energy-saving MAC protocols for wireless sensor networks. Mob. Netw. Appl. 10(5), 783–791 (2005)

    Article  Google Scholar 

  12. Hanson, M.A., Powell Jr., H.C., Barth, A.T., Ringgenberg, K., Calhoun, B.H., Aylor, J.H., Lach, J.: Body area sensor networks: Challenges and opportunities. Computer 42, 58–65 (2009)

    Article  Google Scholar 

  13. Hauer, J.H., Handziski, V., Wolisz, A.: Experimental study of the impact of WLAN interference on IEEE 802.15.4 body area networks. In: Roedig, U., Sreenan, C.J. (eds.) EWSN 2009. LNCS, vol. 5432, pp. 17–32. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Jensen, E.D., Locke, C.D., Tokuda, H.: A time-driven scheduling model for real-time operating systems. In: RTSS 1985: Proc. of the 6th IEEE Real-Time Systems Symposium, pp. 112–122. IEEE Press, Los Alamitos (1985)

    Google Scholar 

  15. Kara, A., Bertoni, H.: Blockage/shadowing and polarization measurements at 2.45 ghz for interference evaluation between Bluetooth and IEEE 802.11 WLAN. In: IEEE Antennas and Propagation Society International Symposium, vol. 3, pp. 376–379 (2001)

    Google Scholar 

  16. Liu, S., Fan, K.W., Sinha, P.: CMAC: an energy-efficient MAC layer protocol using convergent packet forwarding for wireless sensor networks. ACM Trans. Sen. Netw. 5(4), 1–34 (2009)

    Article  Google Scholar 

  17. Miluzzo, E., Zheng, X., Fodor, K., Campbell, A.T.: Radio characterization of 802.15.4 and its impact on the design of mobile sensor networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 171–188. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Obayashi, S., Zander, J.: A body-shadowing model for indoor radio communication environments. IEEE Transactions on Antennas and Propagation 46(6), 920–927 (1998)

    Article  Google Scholar 

  19. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor networks. In: SenSys 2004: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 95–107. ACM, New York (2004)

    Google Scholar 

  20. Rajendran, V., Obraczka, K., Garcia-Luna-Aceves, J.J.: Energy-efficient collision-free medium access control for wireless sensor networks. In: SenSys 2003: Proc. of the 1st International Conference on Embedded Networked Sensor Systems, pp. 181–192. ACM, New York (2003)

    Google Scholar 

  21. Ravindran, B., Jensen, E.D., Li, P.: On recent advances in time/utility function real-time scheduling and resource management. In: IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, pp. 55–60. IEEE Computer Society, Los Alamitos (2005)

    Chapter  Google Scholar 

  22. Rhee, I., Warrier, A., Aia, M., Min, J.: Z-MAC: a hybrid MAC for wireless sensor networks. In: SenSys 2005: Proc. of the 3rd International Conference on Embedded Networked Sensor Systems, pp. 90–101. ACM Press, New York (2005)

    Google Scholar 

  23. Sentilla Corporation: Tmote sky datasheet, http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf

  24. Shimmer Research: Shimmer2 capabilities overview, http://www.shimmer-research.com/wpcontent/uploads/2010/08/Shimmer-2R-Capabilities-Overview.pdf

  25. Srinivasan, K., Levis, P.: RSSI is under appreciated. In: Proceedings of the Third Workshop on Embedded Networked Sensors, EmNets 2006 (2006)

    Google Scholar 

  26. U.S. Health Resources and Services Administrations: What is Behind HRSA’s Projected Supply, Demand, and Shortage of Registered Nurses? (September 2004), http://bhpr.hrsa.gov/healthworkforce/reports/behindrnprojections/index.shtm

  27. Wang, J., Ravindran, B.: Time-utility function-driven switched ethernet: Packet scheduling algorithm, implementation, and feasibility analysis. IEEE Transactions on Parallel and Distributed Systems 15, 119–133 (2004)

    Article  Google Scholar 

  28. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 12(3), 493–506 (2004)

    Article  Google Scholar 

  29. Ye, W., Silva, F., Heidemann, J.: Ultra-low duty cycle MAC with scheduled channel polling. In: SenSys 2006: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 321–334. ACM, New York (2006)

    Google Scholar 

  30. Yoo, S.M., Chen, C.J., Chou, P.H.: Low-complexity, high-throughput multiple-access wireless protocol for body sensor networks. In: International Workshop on Wearable and Implantable Body Sensor Networks, pp. 109–113. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prabh, K.S., Hauer, JH. (2011). Opportunistic Packet Scheduling in Body Area Networks. In: Marrón, P.J., Whitehouse, K. (eds) Wireless Sensor Networks. EWSN 2011. Lecture Notes in Computer Science, vol 6567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19186-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19186-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19185-5

  • Online ISBN: 978-3-642-19186-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics