Skip to main content

Fast, Accurate Event Classification on Resource-Lean Embedded Sensors

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 6567))

Abstract

In wireless sensing applications, it is often necessary to identify high-level events based on low-level sensor signals. Due to the limited computing and energy resources available on existing hardware platforms, achieving high precision classification of high-level events in-network is a challenge. In this paper, we present a new classification technique for identifying events of interest on resource-lean sensors. The approach introduces an innovative condensed kd-tree data structure to represent processed sensor data and uses a fast nearest neighbor search to determine the likelihood of class membership for incoming samples. The classifier consumes limited resources and provides high precision classification. To evaluate the approach, two case studies are considered, in the contexts of human movement and vehicle navigation, respectively. The classification accuracy is above 85% across the two case studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Communications Magazine 40(8), 102–114 (2002)

    Article  Google Scholar 

  2. Breiman, L., et al.: Classification and regression trees (1984)

    Google Scholar 

  3. Burchfield, T.R., Venkatesan, S.: Accelerometer-based human abnormal movement detection in wireless sensor nets. In: HealthNet 2007, pp. 67–69. ACM, New York (2007)

    Google Scholar 

  4. Cover, T., Hart, P.: Nearest neighbor pattern classifIcation. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  5. Forney, G.: The viterbi algorithm. In: Proceedings of the IEEE, vol. 61, pp. 268–278. IEEE, Los Alamitos (1973)

    Google Scholar 

  6. Ganti, R.K., Jayachandran, P., Abdelzaher, T.F., Stankovic, J.A.: Satire: a software architecture for smart attire. In: MobiSys 2006, pp. 110–123. ACM, New York (2006)

    Chapter  Google Scholar 

  7. Grother, P.J., Candela, G.T., Blue, J.L.: Fast implementations of nearest neighbor classifiers. Pattern Recognition 30(3), 459–465 (1997), http://www.sciencedirect.com/science/article/B6V14-3SNTGXH-T/2/208700cc812e769ea72e11e348dd2dbd

    Article  Google Scholar 

  8. Györbíró, N., Fábián, A., Hományi, G.: An activity recognition system for mobile phones. Mobile Network and Applications 14(1), 82–91 (2009)

    Article  Google Scholar 

  9. He, J., et al.: Real-time daily activity classification with wireless sensor networks using hidden markov model. In: EMBC 2007, pp. 3192–3195. IEEE, Los Alamitos (2007)

    Google Scholar 

  10. Henk, C.R., Muller, H.: Context awareness by analysing accelerometer data. In: The 4th Int. Symp. on Wearable Computers, pp. 175–176. IEEE, Los Alamitos (2000)

    Google Scholar 

  11. Kim, S., et al.: Wireless sensor networks for structural health monitoring. In: SenSys 2006, pp. 427–428. ACM, New York (2006)

    Google Scholar 

  12. Kim, S., et al.: Health monitoring of civil infrastructures using wireless sensor networks. In: IPSN 2007, pp. 254–263. ACM, New York (2007)

    Google Scholar 

  13. Kim, Y., et al.: An efficient scheme of target classification and information fusion in wireless sensor networks. Personal Ubiquitous Comput. 13(7), 499–508 (2009)

    Article  Google Scholar 

  14. Levis, P., et al.: Tinyos: An operating system for sensor networks. In: Ambient Intelligence, pp. 115–148. Springer, Heidelberg (2005), http://dx.doi.org/10.1007/3-540-27139-2_7

    Chapter  Google Scholar 

  15. Logan, B.: Mel frequency cepstral coefficients for music modeling. In: International Symposium on Music Information Retrieval (2000)

    Google Scholar 

  16. Lorincz, K., et al.: Mercury: a wearable sensor network platform for high-fidelity motion analysis. In: SenSys 2009, pp. 183–196. ACM, New York (2009)

    Google Scholar 

  17. Lu, H., et al.: Soundsense: scalable sound sensing for people-centric applications on mobile phones. In: MobiSys 2009, pp. 165–178. ACM, New York (2009)

    Google Scholar 

  18. Miluzzo, E., et al.: Sensing meets mobile social networks: the design, imp. and eval. of the CenceMe application. In: SenSys 2008, pp. 337–350. ACM, New York (2008)

    Google Scholar 

  19. Mohan, P., et al.: Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: SenSys 2008, pp. 323–336. ACM Press, New York (2008)

    Google Scholar 

  20. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and Adaptive Systems: Fundamentals through Simulations. Wiley, Nueva York (2000), http://148.201.94.3:8991/F?func=direct&current_base=ITE01&doc_number=000152770

    Google Scholar 

  21. Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using gaussian mixture speaker models. IEEE Transactions on Speech and Audio Processing 3(1), 72–83 (1995)

    Article  Google Scholar 

  22. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD 1995, pp. 71–79. ACM, New York (1995)

    Google Scholar 

  23. Wang, Y., et al.: Predicting link quality using supervised learning in wireless sensor networks. SIGMOBILE Mob. Comput. Commun. Rev. 11(3), 71–83 (2007)

    Article  Google Scholar 

  24. Werner-Allen, G., et al.: Lance: optimizing high-resolution signal collection in wireless sensor networks. In: SenSys 2008, pp. 169–182. ACM, New York (2008)

    Google Scholar 

  25. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (2005), http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0120884070

    MATH  Google Scholar 

  26. Xu, N., et al.: A wireless sensor network for structural monitoring. In: SenSys 2004, pp. 13–24. ACM, New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, H., Hallstrom, J.O. (2011). Fast, Accurate Event Classification on Resource-Lean Embedded Sensors. In: Marrón, P.J., Whitehouse, K. (eds) Wireless Sensor Networks. EWSN 2011. Lecture Notes in Computer Science, vol 6567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19186-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19186-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19185-5

  • Online ISBN: 978-3-642-19186-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics