Skip to main content

Distributed Graph Clustering for Application in Wireless Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 6557))

Abstract

We consider distributed clustering of weighted graphs. Each node in the graph is represented by an agent, with agents independent of each other. The target is to maximize the sum weight of intra-cluster edges with cluster size constrained by an upper limit. To avoid getting stuck in not-too-good local optima, we approach this problem by allowing bad decision-making with a small probability that is dependent on the depth of local optima. We evaluate performance in a setting inspired by self-organizing coordination area formation for coordinated transmission in wireless networks. The results show that our distributed clustering algorithm cab perform better than a distributed greedy local search.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3GPP: Feasibility study for further advancements of E-UTRA (LTE-Advanced). Tech. Rep. TR 36.912 (2009)

    Google Scholar 

  2. Clauset, A.: Finding local community structure in networks. Phsical Review E 72(2), 26132 (2005)

    Article  Google Scholar 

  3. Deosarkar, B., Yadav, N., Yadav, R.: Clusterhead selection in clustering algorithms for wireless sensor networks: A survey, pp. 1–8 (December 2008)

    Google Scholar 

  4. Elias, P., Feinstein, A., Shannon, C.E.: Note on maximum flow through a network. IRE Transactions on Information Theory IT-2, 117–119 (1956)

    Article  Google Scholar 

  5. 3rd Generation Partnership Project; TSG RAN: Physical layer aspects for evolved universal terrestrial radio access (UTRA). Tech. Rep. TR 25.814 (September 2006)

    Google Scholar 

  6. Harel, D., Koren, Y.: On clustering using random walks. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 18–41. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Natural communities in large linked networks. In: KDD 2003: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 541–546. ACM, New York (2003)

    Google Scholar 

  8. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation. part i, graph partitioning. Oper. Res. 37, 865–892 (1989)

    Article  MATH  Google Scholar 

  9. Ford Jr., L., Fulkerson, D.: Maximum flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)

    Article  MATH  Google Scholar 

  10. Karakayali, M.K., Foschini, G.J., Valenzuela, R.A.: Network coordination for spectrally efficient communications in cellular systems. In: IEEE Wireless Commun., pp. 56–61 (August 2006)

    Google Scholar 

  11. Kernighan, B.W., Lin, S.: An Efficient Heuristic Procedure for Partitioning Graphs. The Bell System Technical Journal 49(1), 291–307 (1970)

    Article  MATH  Google Scholar 

  12. Kulkarni, V., Forster, A., Venayagamoorthy, G.: Computational intelligence in wireless sensor networks: A survey. Communications Surveys Tutorials, IEEE PP(99), 1–29 (2010)

    Google Scholar 

  13. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical Review E 69, 066133 (2004)

    Article  Google Scholar 

  14. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(026113) (2004)

    Google Scholar 

  15. Schaeffer, S.E.: Stochastic local clustering for massive graphs. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 354–360. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Schaeffer, S.E.: Graph clustering. Computer Science Review 1, 27–64 (2007)

    Article  MATH  Google Scholar 

  17. Stüber, G.L.: Principles of Mobile Communication (1996)

    Google Scholar 

  18. Yu, J., Chong, P.: A survey of clustering schemes for mobile ad hoc networks. IEEE Communications Surveys Tutorials 7(1), 32–48 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, CH., Qin, S., Alava, M., Tirkkonen, O. (2011). Distributed Graph Clustering for Application in Wireless Networks. In: Bettstetter, C., Gershenson, C. (eds) Self-Organizing Systems. IWSOS 2011. Lecture Notes in Computer Science, vol 6557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19167-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19167-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19166-4

  • Online ISBN: 978-3-642-19167-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics