Skip to main content

The Visual System

  • Chapter
  • First Online:
Clinical Neuroanatomy

Abstract

The topography of the visual pathways is of great importance in clinical neurology. Since the pathways extend from the orbit to the occipital pole, they are often involved in brain lesions as illustrated in several Clinical cases. The visual pathways are highly organized, and lesions in different parts of the visual system produce characteristic visual-field defects, which usually provide clues about the location of the underlying pathological process (Sects. 8.2 and 8.4). Up to the primary visual or striate cortex (V1), the visual pathway represents a serial relay with a clear retinotopic arrangement. Beyond the striate cortex, the projection to extrastriate visual cortex proliferates into a complex web of parallel projections, back-projections and interconnections among a large number of specialized cortical modules (Sect. 8.3). More than 40 of these modules have been identified in monkeys. Early recognized visual areas such as V2, V3 and V3A form a peristriate zone surrounding the primary visual cortex and receive direct input from V1. These regions respond differently to form, colour, depth and motion. Beyond this peristriate zone, a dichotomy of the extrastriate visual areas into a ventral (“what”) and a dorsal (“where”) system has been proposed (Sect. 8.5).

The ventral or temporal system may be specialized in object recognition and, in primates, consists of V4 and the various subregions of the infratemporal cortex and, in humans, of the ventral parts of areas 18 and 19 and the medial occipitotemporal cortex. Lesions of the medial occipitotemporal cortex, which is vascularized by the posterior cerebral artery (PCA), may cause dyschromatopsia and a variety of visual agnosias, including prosopagnosia and alexia. The dorsal or parietal system may be specialized in spatial aspects of vision and consists of V5 (middle temporal area or MT), V5a (medial superior temporal area or MST) and regions of the posterior parietal cortex. Many of these areas selectively respond to motion, stereodisparity and spatial attention. The dorsal stream lies largely in the watershed area between the cerebral arteries. Lesions of the cuneus and posterior parietal lobe cause visuospatial disorders, such as impaired motion perception, spatial disorientation and defects in attention. Many vascular lesions do not correspond to the anatomical dichotomy, however, and show a mixture of dorsal and ventral impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RE, Hof PR, Gattass R, Webster MJ, Ungerleider LG (2000) Visual cortical projections and chemoarchitecture of macaque monkey pulvinar. J Comp Neurol 419:377–393

    PubMed  CAS  Google Scholar 

  • Amunts K, Armstrong E, Malikovic A, Hömke L, Mohlberg H, Schleicher A, Zilles K (2007) Gender-specific left-right asymmetries in human visual cortex. J Neurosci 27:1356–1364

    PubMed  CAS  Google Scholar 

  • Bálint R (1909) Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschr Psychiatr Neurol 25:51–81

    Google Scholar 

  • Barbier EL, Marett S, Danek A et al (2002) Imaging cortical anatomy by high-resolution MR at 3.0 T: Detection of the stripe of Gennari in visual area 17. Magn Reson Med 48:735–738

    PubMed  Google Scholar 

  • Barton JJS (2003) Disorders of face perception and recognition. Neurol Clin 21:521–548

    PubMed  Google Scholar 

  • Barton JJS, Caplan LR (2001) Cerebral visual dysfunction. In: Bogousslavsky J, Caplan LR (eds) Stroke syndromes, 2nd edn. Cambridge University Press, Cambridge, pp 87–110

    Google Scholar 

  • Beckstead RM, Domesick VB, Nauta WJH (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217

    PubMed  CAS  Google Scholar 

  • Bell RA, Thompson HS (1978) Relative afferent pupillary defect in optic tract hemianopias. Am J Ophthalmol 85:538–540

    PubMed  CAS  Google Scholar 

  • Benevento LA, Fallon JH (1975) The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J Comp Neurol 160:339–362

    PubMed  CAS  Google Scholar 

  • Benevento LA, Standage GP (1983) The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus in the lateral pulvinar and medial pulvinar in the macaque monkey. J Comp Neurol 217:307–336

    PubMed  CAS  Google Scholar 

  • Benson DF, Segarra J, Albert ML (1974) Visual agnosia – prosopagnosia. Arch Neurol 30:307–310

    PubMed  CAS  Google Scholar 

  • Bergland R (1969) The arterial supply of the human optic chiasm. J Neurosurg 31:327–334

    PubMed  CAS  Google Scholar 

  • Bodamer J (1947) Die Prosop-Agnosie (Die Agnosie des Physiogno­mieerkennens). Arch Psychiatr Nervenkrankh 179:6–53, English translation by Ellis HD, Florence M (1990) Cogn Neuropsychol 7:81-105

    Google Scholar 

  • Boucard CC (2006) Neuroimaging of visual field defects. Thesis, University of Groningen

    Google Scholar 

  • Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JBTM, Hooymans JMM, Cornelissen FW (2009) Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain 132:1898–1906

    PubMed Central  PubMed  Google Scholar 

  • Boussaoud DR, Desimone R, Ungerleider G (1991) Visual topography of area TEO in the macaque. J Comp Neurol 306:554–575

    PubMed  CAS  Google Scholar 

  • Braak E (1982) On the structure of the human stiate area. Adv Anat Embryol Cell Biol 77:1–87

    PubMed  CAS  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirn­rinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig, English translation by Garey LJ (1999) Brodmann’s localisation in the cerebral cortex. Imperial College Press, London

    Google Scholar 

  • Bürgel U, Schormann T, Scleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: Position and spatial variability of the optic radiation. Neuroimage 10:489–499

    PubMed  Google Scholar 

  • Burkhalter A, Bernardo KL (1989) Organization of corticocortical connections in human visual cortex. Proc Natl Acad Sci USA 86:1071–1075

    PubMed Central  PubMed  CAS  Google Scholar 

  • Casanova C (2004) The visual functions of the pulvinar. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT, Cambridge, MA, pp 592–608

    Google Scholar 

  • Ciccarelli O, Toosy AT, Parker GJM, Wheeler-Kingshott CAM, Barker GJ, Miller DH, Thompson AJ (2003) Diffusion tractography based group mapping of major white-matter pathways in the human brain. Neuroimage 19:1545–1555

    PubMed  CAS  Google Scholar 

  • Clarke S, Miklossy J (1990) Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J Comp Neurol 298:188–214

    PubMed  CAS  Google Scholar 

  • Clarke S, Riahi-Arya S, Tardif E, Cottier Eskenasy A-C, Probst A (1999) Thalamic projections of the fusiform gyrus in man. Eur J Neurosci 11:1835–1838

    PubMed  CAS  Google Scholar 

  • Cohn R, Neumann MS, Wood DH (1977) Prosopagnosia: a clinicopathological study. Ann Neurol 1:177–182

    PubMed  CAS  Google Scholar 

  • Colby CL, Gattass R, Olson CR, Gross CG (1988) Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J Comp Neurol 269:392–413

    Google Scholar 

  • Connolly M, Van Essen D (1984) The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey. J Comp Neurol 226:544–564

    PubMed  CAS  Google Scholar 

  • Cowey A, Stoerig P, Bannister M (1994) Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkey. Neuroscience 61:691–705

    PubMed  CAS  Google Scholar 

  • Dacey DM (2000) Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci 23:743–775

    PubMed  CAS  Google Scholar 

  • Dai J, van der Vliet J, Swaab DF, Buijs RM (1998) Human retinohypothalamic tract as revealed by in vitro postmortem tracing. J Comp Neurol 397:357–370

    PubMed  CAS  Google Scholar 

  • Damasio AR, Benton AL (1979) Impairment of hand movements under visual guidance. Neurology 29:170–178

    PubMed  CAS  Google Scholar 

  • Damasio AR, Damasio H (1983) Anatomical basis of pure alexia. Neurology 33:1573–1583

    PubMed  CAS  Google Scholar 

  • Damasio H, Frank R (1992) Three-dimensional in vivo mapping of brain lesions in humans. Arch Neurol 49:137–143

    PubMed  CAS  Google Scholar 

  • Damasio AR, Yamada T, Damasio H, Corbet J, McKee J (1980) Central achromatopsia: Behavioral, anatomic and physiologic aspects. Neurology 30:1064–1071

    PubMed  CAS  Google Scholar 

  • Damasio AR, Tranel D, Damasio H (1990) Face agnosia and the neural substrates of memory. Annu Rev Neurosci 13:89–109

    PubMed  CAS  Google Scholar 

  • Damasio AR, Tranel D, Rizzo M (2000) Disorders of complex visual processing. In: Mesulam M-M (ed) Principles of behavior and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 332–372

    Google Scholar 

  • Dejerine J (1892) Contributions à l’étude anatomopathologique et clinique des différences variétés de cécité verbale. Mem Soc Biol 44:61–90

    Google Scholar 

  • Ebeling U, Reulen H-J (1988) Neurosurgical topography of the optic radiation in the temporal lobe. Acta Neurochir (Wien) 92:29–36

    CAS  Google Scholar 

  • Falconer MA, Wilson JL (1958) Visual field changes following anterior temporal lobectomy: their significance in relation to Meyer’s loop of the optic radiation. Brain 81:1–14

    PubMed  CAS  Google Scholar 

  • Farah M, Humphreys GW, Rodman HR (1999) Object and face recognition. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience. Academic, San Diego, CA, pp 1339–1361

    Google Scholar 

  • Faull RLM, Mehler WR (1978) The cells of origin of nigrotectal, nigrothalamic and nigrostriatal projections in the rat. Neuroscience 3:989–1002

    PubMed  CAS  Google Scholar 

  • Felleman DV, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    PubMed  CAS  Google Scholar 

  • Field GD, Chichilnisky EJ (2007) Information processing in the primate retina: circuitry and coding. Annu Rev Neurosci 30:1–30

    PubMed  CAS  Google Scholar 

  • Fox CJ, Iaria G, Barton JJS (2008) Disconnection prosopagnosia and face processing. Cortex 44:996–1009

    PubMed  Google Scholar 

  • François C, Percheron G, Yelnik J (1984) Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques. Neuroscience 13:61–76

    PubMed  Google Scholar 

  • Fries W (1981) The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey. Proc R Soc Lond B 213:273–286

    Google Scholar 

  • Frisén L (1979) Quadruple sectoranopia and sectorial optic atrophy. A syndrome of the distal anterior choroidal artery. J Neurol Neurosurg Psychiatry 42:590–594

    PubMed Central  PubMed  Google Scholar 

  • Frisén L, Holmegaard L, Rosenkrantz M (1978) Sectorial optic atrophy and homonymous horizontal sectoranopia: a lateral choroidal artery syndrome? J Neurol Neurosurg Psychiatry 41:374–380

    PubMed Central  PubMed  Google Scholar 

  • Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8:30–52

    PubMed  CAS  Google Scholar 

  • Galletti C, Fattori P, Kutz DF, Battaglini PP (1999) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11:575–582

    PubMed  CAS  Google Scholar 

  • Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6A: an occipitoparietal network processing visual information. Eur J Neurosci 13:1572–1588

    PubMed  CAS  Google Scholar 

  • Gamberini M, Passarelli L, Fattori P, Zucchelli M, Bakola S, Luppino G, Galletti C (2009) Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey. J Comp Neurol 513:622–642

    PubMed  Google Scholar 

  • Gamlin PDR (2006) The pretectum: connections and oculomotor-related roles. Prog Brain Res 151:379–405

    PubMed  Google Scholar 

  • Garey LJ (1990) Visual system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, CA, pp 945–977

    Google Scholar 

  • Giolli RA (1963) An experimental study of the accessory optic system in the cynomolgus monkey. J Comp Neurol 121:89–108

    PubMed  CAS  Google Scholar 

  • Giolli RA, Blanks RHI, Lui F (2006) The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog Brain Res 151:407–440

    PubMed  CAS  Google Scholar 

  • Gloning I, Gloning K, Jellinger K, Quatember R (1970) A case of “prosopagnosia” with necropsy findings. Neuropsychologia 8:199–204

    PubMed  CAS  Google Scholar 

  • Grieve KL, Acuña C, Cudeiro J (2000) The primate pulvinar nuclei: vision and action. Trends Neurosci 23:35–39

    PubMed  CAS  Google Scholar 

  • Gross CG, Sergent J (1992) Face recognition. Curr Opin Neurobiol 2:156–161

    PubMed  CAS  Google Scholar 

  • Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque monkey. J Neurophysiol 35:96–111

    PubMed  CAS  Google Scholar 

  • Gunny R, Yousry TA (2007) Imaging anatomy of the vestibular and visual systems. Curr Opin Neurobiol 20:3–11

    Google Scholar 

  • Gutierrez C, Cusick CG (1997) Area V1 in macaque monkeys projects to multiple histochemically defined subdivisions of the inferior pulvinar complex. Brain Res 765:349–356

    PubMed  CAS  Google Scholar 

  • Gutierrez C, Cole MG, Seltzer B, Cusick CG (2000) Neurochemical and connectional organization of the dorsal pulvinar complex in monkeys. J Comp Neurol 419:61–81

    PubMed  CAS  Google Scholar 

  • Haaxma R, Kuypers HGJM (1975) Intrahemispheric cortical connexions and visual guidance of hand and finger movements in the rhesus monkey. Brain 98:239–260

    PubMed  CAS  Google Scholar 

  • Harting JK, Huerta MF, Frankfurter AJ, Strominger NL, Royce GJ (1980) Ascending pathways from the monkey superior colliculus: an autoradiographic study. J Comp Neurol 192:853–882

    PubMed  CAS  Google Scholar 

  • Hécaen H, Angelergues R (1962) Agnosia for faces (prosopagnosia). Arch Neurol 7:92–100

    PubMed  Google Scholar 

  • Heidenhain A (1927) Beitrag zur Kenntnis der Seelenblindheit. Monatsschr Psychiatr Neurol 66:61–116

    Google Scholar 

  • Helgason C, Caplan LR, Goodwin J, Hedges T (1986) Anterior choroidal artery territory infarction.Report of cases and review. Arch Neurol 43:681–686

    PubMed  CAS  Google Scholar 

  • Hendrickson AE, Wilson JR, Ogren MP (1978) The neuroanatomical organization of pathways between the dorsal geniculate nucleus and visual cortex in Old World and New World primates. J Comp Neurol 182:123–136

    PubMed  CAS  Google Scholar 

  • Hendry SH, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153

    PubMed  CAS  Google Scholar 

  • Hendry SH, Yoshioka T (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264:575–577

    PubMed  CAS  Google Scholar 

  • Hevner RF (2000) Development of connections in the human visual system during fetal mid-gestation: a DiI-tracing study. J Neuropathol Exp Neurol 59:385–392

    PubMed  CAS  Google Scholar 

  • Heywood CA, Wilson B, Cowey AL (1987) A case of cortical colour “blindness” with relatively intact achromatic discrimation. J Neurol Neurosurg Psychiatry 50:22–29

    PubMed Central  PubMed  CAS  Google Scholar 

  • Holmes G (1918) Disturbances of visual orientation. Br J Ophthalmol 2(449–486):506–516

    PubMed Central  PubMed  CAS  Google Scholar 

  • Holmes G, Lister WT (1916) Disturbances of vision from cerebral lesions with special reference to the cortical representation of the macula. Brain 39:34–73

    Google Scholar 

  • Hopkins DA, Niessen LW (1976) Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci Lett 2:253–259

    PubMed  CAS  Google Scholar 

  • Horner JF (1869) Über eine Form von Ptosis. Klin Monatsschr Augenheilkd 7:193–198

    Google Scholar 

  • Horton JC, Hoyt WF (1991a) Quadrantic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex. Brain 114:1703–1718

    PubMed  Google Scholar 

  • Horton JC, Hoyt WF (1991b) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 109:816–824

    PubMed  CAS  Google Scholar 

  • Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764

    PubMed  CAS  Google Scholar 

  • Hoyt WF, Luis O (1963) The primate chiasm: Details of visual fiber organization studied by silver impregnation techniques. Arch Ophthalmol 70:69–85

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146:421–450

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198:1–59

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B 278:377–409

    CAS  Google Scholar 

  • Huerta MF, Harting JK (1982) Tectal control of spinal cord activity: Neuroanatomical demonstration of pathways connecting the superior colliculus with the cervical spinal cord. Prog Brain Res 57:293–328

    PubMed  CAS  Google Scholar 

  • Huerta MF, Harting JK (1983) Sublamination within the superficial gray layer of the squirrel monkey: An analysis of the tectopulvinar projection using anterograde and retrograde transport methods. Brain Res 261:119–126

    PubMed  CAS  Google Scholar 

  • Huerta MF, Harting JK (1984) The mammalian superior colliculus: Studies of its morphology and connections. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 687–773

    Google Scholar 

  • Hughes TS, Abou-Khalil B, Lavin PJ, Fakhoury T, Blumenkopf B, Donahue SP (1999) Visual field defects after temporal lobe resection: a prospective quantitative analysis. Neurology 53:167–172

    PubMed  CAS  Google Scholar 

  • Inouye T (1909) Die Sehstörungen bei Schussverletzungen der kortikalen Seesphäre. Engelmann, Leipzig

    Google Scholar 

  • Itaya SK, Van Hoesen GW (1983) Retinal projections to the inferior and medial pulvinar nuclei in the Old-World monkey. Brain Res 269:223–230

    PubMed  CAS  Google Scholar 

  • Kaas JH, Guillery RW, Allman JM (1972) Some principles of organization in the dorsal lateral geniculate nucleus. Brain Behav Evol 6:253–299

    PubMed  CAS  Google Scholar 

  • Kaplan E (2004) The M, P, and K pathways of the primate visual system. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT, Cambridge, MA, pp 481–493

    Google Scholar 

  • Karlen SJ, Krubitzer L (2009) Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain. Cereb Cortex 19:1360–1371

    PubMed Central  PubMed  Google Scholar 

  • Kerryson JB, Newman NJ (2007) Genetic causes of blindness. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby Elsevier, Philadelphia, PA, pp 274–284

    Google Scholar 

  • King JT Jr, Galetta SL, Flamm ES (1991) Relative afferent pupillary defect with normal vision in a glial brainstem tumor. Neurology 41:945–946

    PubMed  Google Scholar 

  • Klüver H, Bucy PC (1937) “Psychic blindness” and other symptoms following bilateral lobectomy in rhesus monkey. Am J Physiol 119:352–353

    Google Scholar 

  • Kupfer C (1962) The projection of the macula in the lateral geniculate nucleus of man. Am J Ophthalmol 54:597–609

    Google Scholar 

  • Le Gros Clark WE, Penman GG (1934) The projection of the retina in the lateral geniculate body. Proc R Soc Lond B 114:291–313

    Google Scholar 

  • Lhermitte F, Chain F, Escourolle R, Ducarne B, Pillon B (1972) Etude anatomo-clinique d’ un cas de prosopagnosia. Rev Neurol (Paris) 126:329–346

    CAS  Google Scholar 

  • Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4:309–356

    PubMed  CAS  Google Scholar 

  • Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749

    PubMed  CAS  Google Scholar 

  • Loewy AD, Araujo JC, Kerr FWL (1973) Pupillodilator pathways in the brain stem of the cat: anatomical and electrophysiological identification of a central autonomic pathway. Brain Res 60:65–91

    PubMed  CAS  Google Scholar 

  • Ludwig E, Klingler J (1956) Atlas cerebri humani. Karger, Basel

    Google Scholar 

  • Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs AF (1975) The origin of efferent pathways from the primary visual cortex area 17 of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol 164:287–304

    PubMed  CAS  Google Scholar 

  • Luppino G, Hamed SB, Gamberini M, Matelli M, Galletti C (2005) Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto-occipital sulcus of the macaque: a cytoarchitectonic study. Eur J Neurosci 21:3065–3076

    Google Scholar 

  • Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M et al (2007) Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic stereotaxic map of area h0c5. Cereb Cortex 17:562–574

    PubMed  Google Scholar 

  • Malpeli JG, Baker FH (1975) The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. J Comp Neurol 161:569–594

    PubMed  CAS  Google Scholar 

  • Marino R Jr, Rasmussen T (1968) Visual field changes after temporal lobectomy in man. Neurology 18:825–835

    PubMed  Google Scholar 

  • Marx JJ, Iannetti GD, Mika-Gruettner A, Thoemke F, Fitzek S, Vucurevic G et al (2004) Topodiagnostic investigations on the sympathoexcitatory brain stem pathway using a new method of three dimensional brain stem mapping. J Neurol Neurosurg Psychiatry 75:250–255

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maunsell JHR, Van Essen DC (1983a) Functional properties of neurons in middle temporal visual area of the macaque monkey. 1. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    PubMed  CAS  Google Scholar 

  • Maunsell JHR, Van Essen DC (1983b) Functional properties of neurons in middle temporal visual area of the macaque monkey 2. Binocular interactions and sensitivity to binocular disparity. J Neurophysiol 49:1148–1167

    PubMed  CAS  Google Scholar 

  • May PJ (2006) The mammalian superior colliculus: laminar structure and connections. Prog Brain Res 151:205–230

    Google Scholar 

  • McFadzean R, Brosnahan D, Hadley D, Mutlukan E (1994) Representation of the visual field in the occipital striate cortex. Br J Ophthalmol 78:185–190

    PubMed Central  PubMed  CAS  Google Scholar 

  • Meadows JC (1974) The anatomical basis of prosopagnosia. J Neurol Neurosurg Psychiatry 37:489–501

    PubMed Central  PubMed  CAS  Google Scholar 

  • Merigan WH (1989) Chromatic and achromatic vision of macaques: role of the P pathway. J Neurosci 9:776–783

    PubMed  CAS  Google Scholar 

  • Merigan WH, Katz LM, Maunsell JH (1991a) The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci 11:994–1001

    PubMed  CAS  Google Scholar 

  • Merigan WH, Byrne CE, Maunsell JH (1991b) Does primate motion perception depend on the magnocellular pathway? J Neurosci 11:3422–3429

    PubMed  CAS  Google Scholar 

  • Mesulam M-M (1979) Tracing neural connections of human brain with selective silver impregnation. Observations on geniculocalcarine, spinothalamic, and entorhinal pathways. Arch Neurol 36:814–818

    PubMed  CAS  Google Scholar 

  • Meyer A (1907) The connections of the occipital lobes and the present status of the cerebral visual affections. Trans Assoc Am Physicians 22:7–16

    Google Scholar 

  • Mikami A, Newsome WT, Wurtz RH (1986) Motion selectivity in macaque visual cortex I. Mechanisms of direction and speed selectivity in extrastriate area MT. J Neurophysiol 55:1308–1327

    PubMed  CAS  Google Scholar 

  • Miller NR (2007) Optic neuropathies. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby Elsevier, Philadelphia, PA, pp 285–294

    Google Scholar 

  • Minkowski M (1920) Über den Verlauf, die Endigung und die zentrale Repräsentation von gekreuzten und ungekreutzten Sehnervenfasern bei einigen Säugetieren und beim Mensch. Schweiz Arch Neurol Psychiatr 6:201–252

    Google Scholar 

  • Mishkin M (1954) Visual discrimination performance following partial ablations of the temporal lobe II. Ventral surface vs. hippocampus. J Comp Physiol Psychol 47:187–193

    PubMed  CAS  Google Scholar 

  • Mishkin M, Pribram K (1954) Visual discrimination performance following partial ablations of the temporal lobe I. Ventral vs. lateral. J Comp Physiol Psychol 47:14–20

    PubMed  CAS  Google Scholar 

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:415–417

    Google Scholar 

  • Mizuno N, Itoh K, Uchida K, Uemura-Sumi M, Matushima R (1982) A retino-pulvinar projection in the macaque monkey as visualized by the use of anterograde transport of horseradish peroxidase. Neurosci Lett 30:199–203

    PubMed  CAS  Google Scholar 

  • Moll L, Kuypers HGJM (1977) Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198:317–319

    PubMed  CAS  Google Scholar 

  • Morrow MJ, Sharpe JA (1993) Retinotopic and directional deficits of smooth pursuit initiation after posterior cerebral hemispheric lesions. Neurology 43:595–608

    PubMed  CAS  Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908

    PubMed  CAS  Google Scholar 

  • Müller-Forell WS (ed) (2002) Imaging of orbital and visual pathway pathology. Springer, Heidelberg

    Google Scholar 

  • Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10:360–372

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nathan PW, Smith MC (1986) The location of descending fibres to sympathetic neurons supplying the eye and sudomotor neurons supplying the head and neck. J Neurol Neurosurg Psychiatry 49:187–194

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nealey TA, Maunsell JH (1994) Magnocellular and parvocellular ­contributions to the responses of neurons in macaque striate cortex. J Neurosci 14:2069–2079

    Google Scholar 

  • Newsome WT, Wurtz RH, Dursteler MM, Mikami A (1985) Deficits in visual motionprocessing from ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J Neurosci 5:825–840

    PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (1988) The human central nervous system, 3rd edn. Springer, Heidelberg

    Google Scholar 

  • Orban GA, Dupont P, De Bruyn B, Vogels R, Vanderberghe R, Mortelmans L (1995) A motion area in human visual cortex. Proc Natl Acad Sci USA 92:993–997

    PubMed Central  PubMed  CAS  Google Scholar 

  • Papageorgiou E, Ticine LF, Hardiess G, Schaeffel F, Wiethoelter H, Mallot HA et al (2008) The pupillary light reflex pathway. Cytoarchitectonic probabilistic maps in hemianopic patients. Neurology 70:956–963

    PubMed  CAS  Google Scholar 

  • Patten J (1977) Neurological differential diagnosis. Harold starke. Springer, Heidelberg

    Google Scholar 

  • Pearlman AL, Birch J, Meadows JC (1979) Cerebral color blindness: an acquired defect in hue discrimination. Ann Neurol 5:253–261

    PubMed  CAS  Google Scholar 

  • Pevzner S, Bornstein B, Loewenthal M (1962) Prosopagnosia. J Neurol Neurosurg Psychiatry 25:336–338

    PubMed Central  PubMed  CAS  Google Scholar 

  • Plant GT, Nakayama K (1993) The characteristics of residual motion perception in the hemifield contralateral to lateral occipital lesions in humans. Brain 116:1337–1353

    PubMed  Google Scholar 

  • Plant GT, Laxer KD, Barbar NM, Schiffman JS, Nakayama K (1993) Impaired visual motion perception in the contralateral hemifield following unilateral posterior cerebral lesions in humans. Brain 116:1303–1335

    PubMed  Google Scholar 

  • Polyak S (1941) The retina. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Polyak S (1957) The vertebrate visual system. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping and neurobiology. Cereb Cortex 3:313–329

    PubMed  CAS  Google Scholar 

  • Rakic P (1977) Prenatal development of the visual system in the rhesus monkey. Philos Trans R Soc Lond B 278:245–260

    CAS  Google Scholar 

  • Reinges MHT, Schoth F, Coenen VA, Krings T (2004) Imaging of postthalamic visual fiber tracts by anisotropic diffusion weighted MRI and diffusion tensor imaging: Principles and applications. Eur J Radiol 49:91–104

    PubMed  Google Scholar 

  • Rizzo M, Smith V, Pokorny J, Damasio AR (1993) Color perception profiles in central achromatopsia. Neurology 43:995–1001

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157

    PubMed  Google Scholar 

  • Robinson DL, Cowie RJ (1997) The primate pulvinar: structural, functional, and behavioural components of visual salience. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus, vol 2, Experimental and clinical aspects. Elsevier, New York, pp 53–92

    Google Scholar 

  • Robinson DL (1993) Functional contributions of the primate pulvinar. Prog Brain Res 95:371–380

    Google Scholar 

  • Rodieck RW (1973) The vertebrate retina. Freeman, San Francisco, CA

    Google Scholar 

  • Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Res 117:305–312

    PubMed  CAS  Google Scholar 

  • Sarkissov SA, Filiminoff IN, Kononowa EP, Preobraschenskaja SN, Kukuew LA (1955) Atlas of the cytoarchitecture of the human cerebral cortex. Medgiz, Moscow

    Google Scholar 

  • Savino PJ, Paris M, Schatz NJ, Orr LS, Corbett JJ (1978) Optic tract syndrome: A review of 21 patients. Arch Ophthalmol 96:656–663

    PubMed  CAS  Google Scholar 

  • Schiller PH (1977) The effect of superior colliculus ablation on saccades elicited by cortical stimulation. Brain Res 122:154–156

    PubMed  CAS  Google Scholar 

  • Schiller PH (1984) The superior colliculus and visual function. In: Darian-Smith I (ed) Handbook of physiology, Sect 1: the nervous system, vol III, Sensory processes. American Physiological Society, Bethesda, MD, pp 457–505

    Google Scholar 

  • Schiller PH, Logothetis NK, Charles ER (1990) Role of the color-opponent and broad-band channels in vision. Vis Neurosci 5:321–346

    PubMed  CAS  Google Scholar 

  • Schultze M (1866) Zur Anatomie und Physiologie der Retina. Arch Mikrosk Anat 2:175–286

    Google Scholar 

  • Shipp S, Zeki S (1995) Segregation and convergence of specialized pathways in macaque monkey visual cortex. J Anat (Lond) 187:547–562

    Google Scholar 

  • Sincich LC, Horton JC (2004) The circuitry of V1 and V2: integration of color, form, and motion. Annu Rev Neurosci 28:303–326

    Google Scholar 

  • Smith CG, Richardson WFG (1966) The course and distribution of the arteries supplying the visual (striate) cortex. Am J Ophthalmol 61:1391–1396

    PubMed  CAS  Google Scholar 

  • Solomon SG, Lennie P (2007) The machinery of colour vision. Nat Rev Neurosci 8:276–286

    PubMed  CAS  Google Scholar 

  • Sterling P (2004) How retinal circuits optimize the transfer of visual information. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT, Cambridge, MA, pp 234–259

    Google Scholar 

  • Tanaka M, Lindsley E, Lausmann S, Creuzfeldt OD (1990) Afferent connections of the prelunate visual association cortex (areas V4 and DP). Anat Embryol (Berl) 181:19–30

    CAS  Google Scholar 

  • ten Donkelaar HJ, Lammens M, Cruysberg JRM, Hori A, Shiota K, Verbist B (2006a) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical Neuroembryology: Development and developmental disorders of the human central nervous system. Springer, Heidelberg, pp 345–428

    Google Scholar 

  • ten Donkelaar HJ, Lammens M, Renier WR, Hamel B, Hori A, Verbist B (2006b) Development and developmental disorders of the cerebral cortex. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical neuroembryology: development and developmental disorders of the human central nervous system. Springer, Heidelberg, pp 429–518

    Google Scholar 

  • Thurston SE, Leigh RJ, Crawford T, Thompson A, Kennard C (1988) Two distinct deficits of visual tracking caused by unilateral lesions of cerebral cortex in humans. Ann Neurol 23:266–273

    PubMed  CAS  Google Scholar 

  • Tootell RBH, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ et al (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230

    PubMed  CAS  Google Scholar 

  • Tootell RBH, Hadjikhani NK, Mendola JD, Marrett S, Dale AM (1998) From retinotopy to recognition: fMRI in human visual cortex. Trends Cogn Sci 2:174–183

    PubMed  CAS  Google Scholar 

  • Traboulsi EI (ed) (1998) Genetic diseases of the eye. Oxford University Press, New York

    Google Scholar 

  • Tychsen L, Hoyt WF (1985a) Occipital lobe dysplasia: magnetic resonance findings in two cases of isolated congenital hemianopia. Arch Ophthalmol 103:680–682

    PubMed  CAS  Google Scholar 

  • Tychsen L, Hoyt WF (1985b) Relative afferent pupillary defect in congenital occipital hemianopia. Am J Ophthalmol 100:345–346

    PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DG, Goodale MA, Mansfield RJQ (eds) The analysis of visual behaviour. MIT, Cambridge, MA, pp 549–586

    Google Scholar 

  • Ungerleider LG, Galkin TW, Mishkin M (1983) Visuotopic organization of projections from striate cortex to inferior and lateral pulvinar in rhesus monkey. J Comp Neurol 217:137–157

    PubMed  CAS  Google Scholar 

  • Ungerleider LG, Desimone R, Galkin TW, Mishkin M (1984) Subcortical projections of area MT in the macaque. J Comp Neurol 223:368–386

    PubMed  CAS  Google Scholar 

  • Vaina LM (1989) Selective impairment of visual motion interpretation following lesions of the right occipito-parietal areas in humans. Biol Cybern 61:347–359

    PubMed  CAS  Google Scholar 

  • Vaina LM, Lemay M, Bienfang CD, Choi AY, Nakayama K (1990) Intact ‘biological motion’ and ‘structure’ from motion perception in a patient with impaired motion mechanisms. A case study. Vis Neurosci 5:353–369

    PubMed  CAS  Google Scholar 

  • Van Buren JM, Baldwin M (1958) The architecture of the optic radiation in the temporal lobe of man. Brain 81:15–40

    Google Scholar 

  • Van Essen DC (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) The cerebral cortex, vol 3. Plenum, London, pp 259–329

    Google Scholar 

  • Van Essen DC (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT, Cambridge, MA, pp 507–521

    Google Scholar 

  • Van Essen DC, Gallant JL (1994) Neural mechanisms of form and motion processing in the primate visual system. Neuron 13:1–10

    PubMed  Google Scholar 

  • Van Essen DC, Zeki SM (1978) The topographic organization of rhesus monkey prestriate cortex. J Physiol (Lond) 277:193–226

    CAS  Google Scholar 

  • Vanroose E, Marchau M, Dehaene I, Lammens M (1990) Altitudinal hemianopia. Acta Neurol Belg 90:254–264

    PubMed  CAS  Google Scholar 

  • Verrey D (1888) Hémiachromatopsie droite absolue. Arch Ophthalmol (Paris) 8:289–300

    Google Scholar 

  • Vialet N (1893) Les centres cérébraux de la vision et l’ appareil nervéux visuels intra-cérébral. Faculté de Médecine de Paris, Paris

    Google Scholar 

  • Victor JD, Maiese K, Shapely R, Sidtis JJ, Gazzaniga M (1987) Acquired central dyschromatopsia with preservationof color discrimination. Clin Vis Sci 3:183–196

    Google Scholar 

  • von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana, IL

    Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Heidelberg, English translation by LC Triarhou (2008) Atlas of cytoarchitectonics of the adult human cerebral cortex. Karger, Basel

    Google Scholar 

  • von Gudden B (1874) Ueber die Kreuzung der Fasern im Chiasma nervorum opticum. Albrecht von Graefes Arch Ophthalmol 20:249–268

    Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1993) Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys. J Comp Neurol 335:73–91

    PubMed  CAS  Google Scholar 

  • Wernicke C (1883) Über hemianopische Pupillenreaktion. Fortschr Med 1:49–53

    Google Scholar 

  • Wilbrand H (1892) Ein Fall von Seelenblindheit und Hemianopsie mit Sectionsbefund. Dtsch Z Nervenheilk 2:361–387

    Google Scholar 

  • Wilhelm H (1996) Pupille und retrogenikuläre Sehbahn. Ophthalmologe 93:319–324

    PubMed  CAS  Google Scholar 

  • Wilhelm H (1998) Neuro-ophthalmology of pupillary function – practical guidelines. J Neurol 245:573–583

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Yamada K, Nishimura T, Kinoshita S (2005) Tractography to depict three layers of visual field trajectories to the calcarine gyri. Am J Ophthalmol 140:781–785

    PubMed  Google Scholar 

  • Yin TCT, Mountcastle VB (1977) Visual input to the visuomotor mechanisms of the monkey’s parietal lobe. Science 197:1381–1383

    PubMed  CAS  Google Scholar 

  • Yoshioka T, Levitt JB, Lund JS (1994) Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: anatomy of interlaminar projections. Vis Neurosci 11:467–489

    PubMed  CAS  Google Scholar 

  • Zeki SM (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol (Lond) 236:549–573

    CAS  Google Scholar 

  • Zeki SM (1978a) The third visual complex of rhesus monkey prestriate cortex. J Physiol (Lond) 277:245–272

    CAS  Google Scholar 

  • Zeki SM (1978b) Functional specialization in the visual cortex of the rhesus monkey. Nature 274:423–428

    PubMed  CAS  Google Scholar 

  • Zeki SM (1990) A century of cerebral achromatopsia. Brain 113:1721–1777

    PubMed  Google Scholar 

  • Zeki SM (1991) Cerebral akinetopsia (visual motion blindness): a review. Brain 114:811–824

    PubMed  Google Scholar 

  • Zeki S (1993) A vision of the brain. Blackwell, Oxford

    Google Scholar 

  • Zihl J, von Cramon D, Mai N (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106:313–340

    PubMed  Google Scholar 

  • Zihl J, von Cramon D, Mai N, Schmid C (1991) Disturbance of movement vision after bilateral posterior horn damage: Further evidence and follow-up observations. Brain 114:2235–2252

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J. (2011). The Visual System. In: Clinical Neuroanatomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19134-3_8

Download citation

Publish with us

Policies and ethics