Skip to main content

The Autonomic Nervous System

  • Chapter
  • First Online:
Clinical Neuroanatomy

Abstract

The autonomic nervous system innervates the visceral organs, the glands and the blood vessels. It regulates the internal environment, and it is largely responsible for maintaining normal bodily functions such as respiration, blood pressure and micturition. The peripheral autonomic nervous system consists of two parts, a thoracolumbar or sympathetic and a craniosacral or parasympathetic division, which usually have antagonistic effects (Sect. 12.2). The sympathetic system is organized to mobilize the body for activities, especially in stressful situations (Cannon’s fight or flight), whereas the parasympathetic system, in particular, stimulates the peristaltic and secretory activities of the gastrointestinal tract. The peripheral part of the autonomic nervous system includes neurons in the viscera and peripheral ganglia, which are innervated by the lateral horn of the spinal cord and certain brain stem nuclei. Neuronal plexuses in the gastrointestinal tract form the enteric nervous system, which is often viewed as the third component of the autonomic nervous system. Tonically active bulbar centres control vital functions such as blood pressure and respiration. The autonomic centres in the brain stem and spinal cord are reciprocally connected with the central autonomic network (Sect. 12.3), which includes the hypothalamus and several other forebrain (in particular the extended amygdala and the insula) and brain stem structures such as the periaqueductal grey and the parabrachial nucleus. This network is essential for the integration of autonomic, endocrine and somatomotor functions. The peripheral and central autonomic pathways may be affected by many diseases, which cause derangement of autonomic functions as exemplified in several Clinical cases on disorders of the neural control of blood pressure, breathing and micturition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams P, Cardozo L, Khoury S, Wein A (2002) Incontinence, 2nd edn. Health, Jersey

    Google Scholar 

  • Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary tract and spinal trigeminal tract. J Comp Neurol 283:248–268

    PubMed  CAS  Google Scholar 

  • Ammons WS, Blair RW, Foreman RD (1984a) Responses of primate T1-T5 spinothalamic neurons to gallbladder distension. Am J Physiol 247:R995–R1002

    PubMed  CAS  Google Scholar 

  • Ammons WS, Blair RW, Foreman RD (1984b) Greater splanchnic excitation of primate T1-T5 spinothalamic neurons. J Neurophysiol 51:592–603

    PubMed  CAS  Google Scholar 

  • Andrew J, Nathan PW (1964) Lesions of the anterior frontal lobes and disturbances of micturition and defaecation. Brain 87:233–262

    PubMed  CAS  Google Scholar 

  • Appenzeller O (1976) The autonomic nervous system. An introduction to basic and clinical concepts, 2nd edn. North-Holland, Amsterdam

    Google Scholar 

  • Appenzeller O (ed) (1999) The autonomic nervous system. Part I. Normal functions, vol 74, Handbook of clinical neurology. Elsevier Science, Amsterdam

    Google Scholar 

  • Appenzeller O, ed (2000) The autonomic nervous system. Part II. Dysfunctions. Handbook of clinical neurology, Vol 75. Elsevier Science, Amsterdam

    Google Scholar 

  • Arango V, Ruggiero DA, Callaway JL, Anwar M, Mann JJ, Reis DJ (1988) Catecholaminergic neurons in the ventrolateral medulla and nucleus of the solitary tract in the human. J Comp Neurol 273:224–240

    PubMed  CAS  Google Scholar 

  • Armour JA, Murphy DA, Yuan BX, MacDonald S, Hopkins DA (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247:289–298

    PubMed  CAS  Google Scholar 

  • Athwal BS, Berkley KJ, Hussain J, Brennan A, Craggs M, Sakakibara R et al (2001) Brain responses to changes in bladder volume and urge to void in healthy men. Brain 124:369–377

    PubMed  CAS  Google Scholar 

  • Baljet B, Drukker J (1981) Some aspects of the innervation of the abdominal and pelvic organs in the human female fetus. Acta Anat (Basel) 111:222–230

    Google Scholar 

  • Bannister R (ed) (1988a) Autonomic failure. A textbook of clinical disorders of the autonomic nervous system, 2nd edn. Oxford Medical, Oxford

    Google Scholar 

  • Bannister R (1988b) Clinical features of autonomic failure. In: Bannister R (ed) Autonomic failure. A textbook of clinical disorders of the autonomic nervous system, 2nd edn. Oxford University Press, Oxford, pp 267–288

    Google Scholar 

  • Banzett RB, Mulnier HE, Murphy K, Rosen SD, Wise RJ, Adams L (2000) Breathlessness in humans activates insular cortex. Neuroreport 11:2117–2120

    PubMed  CAS  Google Scholar 

  • Barrington FJF (1921) The relation of the hind-brain to micturition. Brain 44:23–53

    Google Scholar 

  • Barrington FJF (1925) The effect of lesions of the hind- and mid-brain on micturition in the cat. Quart J Exp Physiol 15:81–102

    Google Scholar 

  • Baylis LL, Rolls ET, Baylis GC (1995) Afferent connections of the caudolateral orbitofrontal cortex taste area of the primate. Neuroscience 64:801–812

    PubMed  CAS  Google Scholar 

  • Beck RO, Betts CD, Fowler CJ (1994) Genitourinary dysfunction in multiple system atrophy: clinical features and treatment in 62 cases. J Urol 151:1336–1341

    PubMed  CAS  Google Scholar 

  • Benarroch EE, Smithson IL, Low PA, Parisi JE (1998) Depletion of catecholaminergic neurons of the rostral ventrolateral medulla in multiple systems atrophy with autonomic failure. Ann Neurol 43:156–161

    PubMed  CAS  Google Scholar 

  • Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 262:546–562

    PubMed  CAS  Google Scholar 

  • Blessing WW (1997) The lower brain stem and bodily homeostasis. Oxford University Press, New York

    Google Scholar 

  • Blessing WW (2004) Lower brain stem regulation of visceral, cardiovascular, and respiratory function. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 464–478

    Google Scholar 

  • Blok BFM (1998) The organization of the central control of micturition in cats and humans. Anatomical and physiological investigations. Thesis, University of Groningen

    Google Scholar 

  • Blok BFM, Holstege G (1994) Direct projections from the periaqueductal gray to the pontine micturition center (M-region). An anterograde and retrograde tracing study in the cat. Neurosci Lett 166:93–96

    PubMed  CAS  Google Scholar 

  • Blok BFM, Holstege G (1997) Ultrastructural evidence for a direct pathway from the pontine micturition center to the parasympathetic preganglionic motoneurons of the bladder of the cat. Neurosci Lett 222:195–198

    PubMed  CAS  Google Scholar 

  • Blok BFM, Holstege G (1998) The central nervous system control of micturition in cats and humans. Behav Brain Res 92:119–125

    PubMed  CAS  Google Scholar 

  • Blok BFM, de Weerd H, Holstege G (1995) Ultrastructural evidence for a paucity of projections from the lumbosacral cord to the M-region in the cat. A new concept for the organization of the micturition reflex with the periaqueductal gray as central relay. J Comp Neurol 359:300–309

    PubMed  CAS  Google Scholar 

  • Blok BFM, de Weerd H, Holstege G (1997a) The pontine micturition center projects to sacral cord GABA-immunoreactive neurons in the cat. Neurosci Lett 233:109–112

    PubMed  CAS  Google Scholar 

  • Blok BFM, Sturms LM, Holstege G (1997b) A PET study on cortical and subcortical control of pelvic floor musculature in women. J Comp Neurol 389:535–544

    PubMed  CAS  Google Scholar 

  • Blok BFM, Sturms LM, Holstege G (1998) Brain activation during micturition in women. Brain 121:2033–2042

    PubMed  Google Scholar 

  • Bryant TH, Yoshida S, de Castro D, Lipski J (1993) Expiratory neurons of the Bötzinger complex in the rat: a morphological study following intracellular labeling with biocytin. J Comp Neurol 335:267–282

    PubMed  CAS  Google Scholar 

  • Bucy PC (1936) The carotid sinus nerve in man. Arch Int Med 58:418

    Google Scholar 

  • Cabot JB (1990) Sympathetic preganglionic neurons: cytoarchitecture, ultrastructure, and biophysical properties. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp 44–67

    Google Scholar 

  • Carlton SM, Honda CN, Denoroy L, Willis WD Jr (1987) Descending phenylethanolamine-N-methyltransferase projections to the monkey spinal cord: an immunohistochemical double labeling study. Neurosci Lett 76:133–139

    PubMed  CAS  Google Scholar 

  • Carlton SM, Honda CN, Denoroy L (1989) Distribution of phenylethanolamine-N-methyltransferase cell bodies, axons, and terminals in monkey brain stem: an immunohistochemical mapping study. J Comp Neurol 287:273–285

    PubMed  CAS  Google Scholar 

  • Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641

    PubMed  CAS  Google Scholar 

  • Cechetto DF, Saper CB (1987) Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J Comp Neurol 262:27–45

    PubMed  CAS  Google Scholar 

  • Cechetto DF, Saper CB (1988) Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J Comp Neurol 272:579–604

    PubMed  CAS  Google Scholar 

  • Cervero F, Foreman RD (1990) Sensory innervation of the viscera. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp 104–125

    Google Scholar 

  • Ciriello J (1983) Brainstem projections of aortic baroreceptor afferent fibers in the rat. Neurosci Lett 36:37–42

    PubMed  CAS  Google Scholar 

  • Ciriello J, Caverson MM, Polosa C (1986) Function of the ventrolateral medulla in the control of the circulation. Brain Res Rev 11:359–391

    Google Scholar 

  • Contreras RJ, Beckstead RM, Norgren R (1982) The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat. Brain Res Bull 6:303–320

    CAS  Google Scholar 

  • Costa M, Furness JB, Gibbins IL (1986) Chemical coding of enteric neurons. Prog Brain Res 68:217–239

    PubMed  CAS  Google Scholar 

  • Craig AD (2009) How do you feel – now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    PubMed  CAS  Google Scholar 

  • Dampney RAL, Moon EA (1980) Role of ventrolateral medulla in vasomotor response to cerebral ischemia. Am J Physiol 239:H349–H358

    PubMed  CAS  Google Scholar 

  • DasGupta R, Kavia RB, Fowler CJ (2007) Cerebral mechanisms and voiding function. BJU Int 99:731–734

    PubMed  Google Scholar 

  • de Groat WC (1986) Spinal cord projections of visceral afferent neurones. Prog Brain Res 67:165–188

    PubMed  Google Scholar 

  • de Groat WC (1990) Central neural control of the lower urinary tract. In: Bock G, Whelan J (eds) Neurobiology of incontinence. Wiley, Chichester, pp 27–56

    Google Scholar 

  • de Groat WC (2002) Plasticity of bladder reflex pathways during postnatal development. Physiol Behav 77:689–692

    PubMed  Google Scholar 

  • de Groat WC, Steers WD (1990) Autonomic regulation of the urinary bladder and sex organs. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, Oxford, pp 310–333

    Google Scholar 

  • de Groat WC, Yoshimura N (2005) Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Prog Brain Res 152:59–84

    Google Scholar 

  • de Lacalle S, Saper CB (2000) Calcitonin gene-related peptide-like immunoreactivity marks putative visceral sensory pathways in human brain. Neuroscience 100:115–130

    PubMed  Google Scholar 

  • Dempsey JA, Pack AI (2000) Regulation of breathing. Dekker, New York

    Google Scholar 

  • Dickinson LD, Papadopoulos SM, Hoff JT (1993) Neurogenic hypertension related to basilar impression. J Neurosurg 79:924–928

    PubMed  CAS  Google Scholar 

  • Dobbins EG, Feldman JL (1994) Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol 347:64–86

    PubMed  CAS  Google Scholar 

  • Eckberg DL, Sleight P (1992) Hypertension. Human baroreflexes in health and disease. Clarendon, Oxford

    Google Scholar 

  • Fein JM, Frishman W (1980) Neurogenic hypertension related to vascular compression of the lateral medulla. Neurosurgery 6:615–622

    PubMed  CAS  Google Scholar 

  • Feldman JL (1986) Neurophysiology of breathing in mammals. In: Bloom FE (ed) Handbook of physiology, Sect 1: the nervous system, vol IV, Intrinsic regulatory systems of the brain. American Physiological Society, Bethesda, MD, pp 463–524

    Google Scholar 

  • Feldman JL, McCrimmon DR (1999) Neural control of breathing. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience. Academic, San Diego, CA, pp 1063–1090

    Google Scholar 

  • Feldman JL, Smith JC (1995) Neural control of respiratory pattern in mammals: an overview. Lung Biol Health Dis 79:39–69

    Google Scholar 

  • Fowler CJ (1999) Neurological disorders of micturition and their treatment. Brain 122:1213–1231

    PubMed  Google Scholar 

  • Fowler CJ, Griffiths D, de Groat WC (2008) The neural control of micturition. Nat Rev Neurosci 9:453–466

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fox EA, Powley TL (1992) Morphology of identified preganglionic neurons in the dorsal motor nucleus of the vagus. J Comp Neurol 322:79–98

    PubMed  CAS  Google Scholar 

  • Fukuyama H, Matsuzaki S, Ouchi Y, Yamauchi H, Nagahama Y, Kimura J et al (1996) Neural control of micturition in man examined with single photon emission computed tomography using 99m Tc-HMPAO. Neuroreport 7:3009–3012

    PubMed  CAS  Google Scholar 

  • Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Gai WP, Geffen LB, Denoroy L, Blessing WW (1993) Age-related loss of dorsal vagal neurons in Parkinson’s disease. Neurology 42:2106–2111

    Google Scholar 

  • Geser F, Wenning GK (2007) Primary autonomic failure. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby Elsevier, Philadelphia, PA, pp 372–393

    Google Scholar 

  • Gibbins I (2004) Peripheral autonomic pathways. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 134–189

    Google Scholar 

  • Gosling JA (1979) The structure of the bladder and urethra in relation to function. Urol Clin North Am 6:31–38

    PubMed  CAS  Google Scholar 

  • Gosling JA (1984) The structure of the female lower urinary tract and pelvic floor. Urol Clin North Am 12:207–214

    Google Scholar 

  • Gosling JA, Dixon JS, Lendon RL (1977) The autonomic innervation of the human male and female bladder neck and proximal urethra. J Urol 118:302–305

    PubMed  CAS  Google Scholar 

  • Graham JG, Oppenheimer DR (1969) Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J Neutol Neurosurg Psychiatry 32:28–34

    CAS  Google Scholar 

  • Granata AR, Ruggiero DA, Park DH, Joh TH, Reis DJ (1983) Lesions of epinephrine neurons in the rostral ventrolateral medulla abolish the vasodepressor components of baroreflex and cardiopulmonary reflex. Hypertension 5(Suppl V):V80–V84

    PubMed  CAS  Google Scholar 

  • Granata AR, Ruggiero DA, Joh TH, Reis DJ (1985) Brainstem area with epinephrine neurons mediates baroreflex vasodepressor responses. Am J Physiol 248:H547–H567

    PubMed  CAS  Google Scholar 

  • Griffiths D, Holstege G, de Wall H, Dalm E (1990) Control and coordination of bladder and urethral function in the brain stem of the cat. Neurourol Urodyn 9:63–82

    Google Scholar 

  • Griffiths D, Derbyshire S, Stenger A, Resnick N (2005) Brain control of normal and overactive bladder. J Urol 174:1862–1867

    PubMed  Google Scholar 

  • Guyenet PG (2000) Neural structures that mediate sympathoexcitation during hypoxia. Respir Physiol 121:147–162

    PubMed  CAS  Google Scholar 

  • Halliday GM, Li YW, Joh TH, Cotton RGH, Howe PRC, Geffen LB, Blessing WW (1988) Distribution of monoamine-synthesizing neurons in the human medulla. J Comp Neurol 273:301–317

    PubMed  CAS  Google Scholar 

  • Harper RM, Bandler R, Spriggs D, Alger JR (2000a) Lateralized and widespread brain activation during transient blood pressure elevation revealed by magnetic resonance imaging. J Comp Neurol 417:195–204

    PubMed  CAS  Google Scholar 

  • Harper RM, Kinney HC, Fleming PJ, Thach BT (2000b) Sleep influences on homeostatic functions: implications for sudden infant death syndrome. Respir Physiol 119:123–132

    PubMed  CAS  Google Scholar 

  • Heaton ND, Garrett JR, Howard ER (1988) The enteric nervous system: structure and pathology. In: Bannister R (ed) Autonomic failure. A textbook of clinical disorders of the autonomic nervous system, 2nd edn. Oxford University Press, Oxford, pp 238–263

    Google Scholar 

  • Heimer L (1995) The human brain and spinal cord. Functional neuroanatomy and dissection guide, 2nd edn. Springer, New York

    Google Scholar 

  • Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 30:126–157

    PubMed  Google Scholar 

  • Hering HE (1927) Die Karotissinusreflexe auf Herz und Gefässe. Steinkopf, Dresden

    Google Scholar 

  • Hering E, Breuer J (1868) Die Selbststeuerung der Athmung durch den Nervus vagus. SB Akad Wiss Wien, Abt II 57:672–677

    Google Scholar 

  • Heymans C, Neil E (1958) Reflexogenic areas of the cardiovascular system. Churchill, London

    Google Scholar 

  • Heymans C, Bouckhaert JJ, Dautrebande L (1930) Sinus carotidien et reflexes respiratoires II. Arch Int Pharmacodyn 39:400–448

    Google Scholar 

  • Holstege G (2005) Micturition and the soul. J Comp Neurol 493:15–20

    PubMed  Google Scholar 

  • Holstege G, Kuypers HGJM, Boer RC (1979) Anatomical evidence for direct brain stem projections to the somatic motoneuronal groups and autonomic preganglionic cell groups in cat spinal cord. Brain Res 171:329–333

    PubMed  CAS  Google Scholar 

  • Holstege G, Graveland G, Bijker-Biemond C, Schuddeboom I (1983) Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. Brain Behav Evol 23:47–62

    PubMed  CAS  Google Scholar 

  • Holstege G, Griffiths D, de Wall H, Dalm E (1986) Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol 250:449–461

    PubMed  CAS  Google Scholar 

  • Hopkins DA, Holstege G (1978) Amygdaloid projections to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 32:529–547

    PubMed  CAS  Google Scholar 

  • Hovelacque A (1927) Anatomie des nerfs crâniens et rachidiens et du système grand sympathique chez l’homme. Doin, Paris

    Google Scholar 

  • Howard ER, Garrett JR (1970) Histochemistry and electron microscopy of rectum and colon in Hirschsprung’s disease. Proc R Soc Med 63:20–22

    Google Scholar 

  • Ito S, Ogawa H (1991) Cytochrome oxidase staining facilitates unequivocal visualization of the primary gustatory area in the fronto-operculo-insular cortex of macaque monkeys. Neurosci Lett 130:61–64

    PubMed  CAS  Google Scholar 

  • Ito S, Ohgushi M, Ifuku H, Ogawa H (2001) Neuronal activity in the monkey fronto-opercular and adjacent insular/prefrontal cortices during a taste discrimination GO/NOGO task: response to cues. Neurosci Res 41:257–266

    PubMed  CAS  Google Scholar 

  • Jänig W (1996) Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulations and sensations. Biol Psychol 42:29–51

    PubMed  Google Scholar 

  • Jänig W, Häbler H-J (1999) Organization of the autonomic nervous system: structure and function. Handb Clin Neurol 74:1–52

    Google Scholar 

  • Jänig W, Morrison JF (1986) Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. Prog Brain Res 67:87–114

    PubMed  Google Scholar 

  • Jannetta PJ, Segal R, Wolfson SKJ, Dujovny M, Semba A, Cook EE (1985) Neurogenic hypertension: etiology and surgical treatment. II. Observations in an experimental nonhuman primate model. Ann Surg 202:253–261

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jones CM (1938) Digestive tract pain: diagnosis and treatment; experimental observations. Macmillan, New York

    Google Scholar 

  • Kalia M (1981) Brain stem localization of vagal preganglionic neurons. J Auton Nerv Syst 3:445–481

    Google Scholar 

  • Kalia M, Mesulam M-M (1980a) Brain stem projections of sensory and motor components of the vagus complex in the cat. I. The cervical vagus and nodose ganglion. J Comp Neurol 193:435–465

    PubMed  CAS  Google Scholar 

  • Kalia M, Mesulam M-M (1980b) Brain stem projections of sensory and motor components of the vagus complex in the cat. II. Laryngeal, tracheobonchial, pulmonary, cardiac and gastrointestinal branches. J Comp Neurol 193:467–508

    PubMed  CAS  Google Scholar 

  • Kalia M, Richter D (1988) Rapidly adapting pulmonary receptor afferents: I. Arborization in the nucleus of the tractus solitarius. J Comp Neurol 274:560–573

    PubMed  CAS  Google Scholar 

  • Kaplan SA, Chancellor MB, Blaivas J (1991) Bladder and sphincter behavior in patients with spinal cord lesions. J Urol 146:113–117

    PubMed  CAS  Google Scholar 

  • Karczmar AG, Koketsu K, Nishi S (eds) (1986) Autonomic and Enteric Ganglia: transmission and its pharmacology. Plenum, New York

    Google Scholar 

  • Kavia RBC, DasGupta R, Fowler CJ (2005) Functional imaging and the central control of the bladder. J Comp Neurol 493:27–32

    PubMed  Google Scholar 

  • Keswani NH, Hollinshead WH (1956) Localization of the phrenic nucleus in the spinal cord of man. Anat Rec 125:683–699

    PubMed  Google Scholar 

  • King AB, Menon RS, Hachinski V, Cechetto DF (1999) Human forebrain activation by visual stimuli. J Comp Neurol 413:572–582

    PubMed  CAS  Google Scholar 

  • Kinney HC, Filiano JJ, Harper RM (1992) The neuropathology of the sudden infant death syndrome. A review. J Neuropathol Exp Neurol 51:115–126

    PubMed  CAS  Google Scholar 

  • Kirby R, Fowler C, Gosling J, Bannister R (1986) Urethro-vesical dysfunction in progressive autonomic failure with multiple system atrophy. J Neurol Neurosurg Psychiatry 49:554–562

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kleinhaus S, Boley SJ, Sheran M, Sieber WK (1979) Hirschsprung’s disease. A survey of the members of the surgical section of the Academy of Pediatrics. J Pediatr Surg 14:588–597

    PubMed  CAS  Google Scholar 

  • Koch E (1931) Die reflektorische Selbststeuerung des Kreislaufs. Steinkopf, Dresden

    Google Scholar 

  • Kuntz A (1953) The autonomic nervous system, 4th edn. Lea & Febiger, Philadelphia, PA

    Google Scholar 

  • Kuru M (1965) Nervous control of micturition. Physiol Rev 45:425–494

    PubMed  CAS  Google Scholar 

  • Lavezzi AM, Matturi L (2008) Functional neuroanatomy of the human pre-Bötzinger complex with particular references to sudden unexplained perinatal and infant death. Neuropathology 28:10–16

    PubMed  Google Scholar 

  • Lenz FA, Gracely RH, Zirh TA, Leopold DA, Rowland LH, Dougherty PM (1997) Human thalamic nucleus mediating taste and multiple other sensations related to ingestive behavior. J Neurophysiol 77:3406–3409

    PubMed  CAS  Google Scholar 

  • Lipski J, Merrill EG (1980) Electrophysiological demonstration of the projection from expiratory neurons in the rostral medulla to contralateral dorsal respiratory group. Brain Res 197:521–524

    PubMed  CAS  Google Scholar 

  • Loewy AD (1981) Descending pathways to sympathetic and parasympathetic preganglionic neurons. J Auton Nerv Syst 3:265–275

    PubMed  CAS  Google Scholar 

  • Loewy AD (1990a) Anatomy of the autonomic nervous system. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp 3–16

    Google Scholar 

  • Loewy AD (1990b) Central autonomic pathways. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp 68–87

    Google Scholar 

  • Loewy AD, Saper CB, Baker RP (1979) Descending projections from the pontine micturition center. Brain Res 172:533–538

    PubMed  CAS  Google Scholar 

  • Lohman AHM, ten Donkelaar HJ, Witter MP, Griffioen FMM (2007) De orgaanstelsels van het lichaam. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Maarssen, Elsevier, pp 21–119 (in Dutch)

    Google Scholar 

  • Luiten PGM, ter Horst GJ, Steffens AB (1987) The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol 28:1–54

    PubMed  CAS  Google Scholar 

  • Mack SO, Wu M, Kc P, Haxhiu MA (2007) Stimulation of the hypothalamic paraventricular nucleus modulates cardiorespiratory responses via oxytocinergic innervation of neurons in the pre-Bötzinger complex. J Appl Physiol 102:189–199

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martin GF, Humbertson AO, Laxson C, Panneton WM (1979) Dorsolateral pontospinal systems. Possible routes for catecholamine modulation of nociception. Brain Res 163:333–339

    PubMed  CAS  Google Scholar 

  • McDougall AJ, McLeod JG (2003) Autonomic nervous system function in multiple sclerosis. J Neurol Sci 215:79–85

    PubMed  CAS  Google Scholar 

  • Milner P, Lincoln J, Burnstock G (1999) The neurochemical organisation of the autonomic nervous system. Handb Clin Neurol 74:87–134

    Google Scholar 

  • Mitchell GAG (1953) The innervation of the heart. Br Heart J 15:159–171

    PubMed Central  PubMed  CAS  Google Scholar 

  • Monteau R, Hilaire G (1991) Spinal respiratory motoneurons. Prog Neurobiol 37:83–144

    PubMed  CAS  Google Scholar 

  • Morgan C, Nadelhaft I, de Groat WC (1981) The distribution of visceral primary afferents from the pelvic nerve within Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 201:415–440

    PubMed  CAS  Google Scholar 

  • Morley J (1931) Abdominal pain. William Wood, New York

    Google Scholar 

  • Morrison J, Steers WD, Brading A, Blok B, Fry C, de Groat WC (2002) Neurophysiology and neuropharmacology. In: Abrams P, Cardozo L, Khoury S, Wein A (eds) Incontinence, 2nd edn. Health, Jersey, pp 85–163

    Google Scholar 

  • Nachmanoff DB, Panigrahy A, Filiano JJ, Mandell F, Sleeper LA, Valdez-Dapena M et al (1998) Brain stem 3H-nicotine receptor binding in the sudden infant death syndrome. J Neuropathol Exp Neurol 57:1018–1025

    PubMed  CAS  Google Scholar 

  • Nadelhaft I, Vera PL (1996) Neurons in the rat brain and spinal cord labeled after pseudorabies virus injected into the external urethral sphincter. J Comp Neurol 375:502–517

    PubMed  CAS  Google Scholar 

  • Nadelhaft I, Roppolo J, Morgan C, de Groat WC (1983) Parasympathetic preganglionic neurons and visceral primary afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. J Comp Neurol 216:36–52

    PubMed  CAS  Google Scholar 

  • Naraghi R, Geiger H, Crnac J, Huk W, Fahlbusch R, Engels G, Luft FC (1994) Posterior fossa neurovascular anomalies in essential hypertension. Lancet 344:1466–1470

    PubMed  CAS  Google Scholar 

  • Nattie EE (1999) CO2 brain stem chemoreceptors and breathing. Prog Neurobiol 59:299–301

    PubMed  CAS  Google Scholar 

  • Nauta WJH (1972) The central visceromotor system: a general survey. In: Hockman CH (ed) Limbic system mechanisms and autonomic function. Thomas, Springfield, IL, pp 21–40

    Google Scholar 

  • Netter FH (1959) The CIBA collection of medical illustrations. Curtis, New York

    Google Scholar 

  • Noto H, Roppolo JR, Steers WD, de Groat WC (1991) Electrophysio­logical analysis of the ascending and descending components of the micturition reflex pathway in the rat. Brain Res 549:95–105

    PubMed  CAS  Google Scholar 

  • Nour S, Svarer C, Kristensen JK, Paulson OB, Law I (2000) Cerebral activation during micturition in normal men. Brain 123:781–789

    PubMed  Google Scholar 

  • Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    PubMed  CAS  Google Scholar 

  • Onufrowicz B (1899) Notes on the arrangement and function of the cell groups in the sacral region of the spinal cord. J Nerv Mental Dis 26:498–504

    Google Scholar 

  • Oppenheimer D (1988) Neuropathology of autonomic failure. In: Bannister R (ed) Autonomic failure. A textbook of clinical disorders of the autonomic nervous system, 2nd edn. Oxford University Press, Oxford, pp 451–463

    Google Scholar 

  • Panigrahy A, Filiano JJ, Sleeper LA, Mandell F, Valdez-Dapena M, Krous HF et al (2000) Decreased serotonergic receptor binding in rhombic lip-derived regions of the medulla oblongata in the sudden infant death syndrome. J Neuropathol Exp Neurol 59:377–384

    PubMed  CAS  Google Scholar 

  • Panneton WM, Loewy AD (1980) Projections of the carotid sinus nerve to the nucleus of the solitary tract in the cat. Brain Res 191:239–244

    PubMed  CAS  Google Scholar 

  • Pattinson KTS, Mitsis GD, Harvey AK, Jbabdi S, Dirckx S, Mayhew SD et al (2009) Determination of the human brainstem respiratory control network and its cortical connections in vivo using functional and structural imaging. Neuroimage 44:295–305

    PubMed  Google Scholar 

  • Pavlakis AJ, Siroky MB, Goldstein I, Krane RJ (1983) Neurourologic findings in conus medullaris and cauda equina injury. Arch Neurol 40:570–573

    PubMed  CAS  Google Scholar 

  • Persson PB, Kirchheim HR (eds) (1991) Baroreceptor reflexes: integrative functions and clinical aspects. Springer, Berlin

    Google Scholar 

  • Pfeiffer RF (2007) Bladder and sexual function. In: Schapira AHV (ed) Neurology and clinical neuroscience. Mosby Elsevier, Philadelphia, PA, pp 362–370

    Google Scholar 

  • Pick J (1970) The autonomic nervous system. Lippincott, Philadelphia, PA

    Google Scholar 

  • Plum F, Posner JB (1980) The diagnosis of stupor and coma, 3rd edn. Davis, Philadelphia, PA

    Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1:1242–1259

    PubMed  CAS  Google Scholar 

  • Pritchard TC, Hamilton RB, Morse JR, Norgren R (1986) Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol 244:213–228

    PubMed  CAS  Google Scholar 

  • Quinn N (1989) Multiple system atrophy – the nature of the beast. J Neurol Neurosurg Psychiatry 52(Suppl):78–89

    PubMed Central  Google Scholar 

  • Rámon y Cajal S (1909) Histologie du système nerveux de l’homme et des vertĂ©brĂ©s. Maloine, Paris

    Google Scholar 

  • Ribiero JA, Pallot DJ (1987) Chemoreceptors in respiratory control. Croom Helm, London

    Google Scholar 

  • Roppolo JR, Nadelhaft I, de Groat WC (1985) The organization of pudendal motoneurons and primary afferent projections in the ­spinal cord of the rhesus monkey revealed by horseradish peroxidase. J Comp Neurol 234:457–488

    Google Scholar 

  • Ross CA, Ruggiero DA, Joh TH, Park TH, Reis DJ (1983) Adrenaline synthesizing neurons in the rostral ventrolateral medulla oblongata: a possible role in tonic vasomotor control. Brain Res 273:356–361

    PubMed  CAS  Google Scholar 

  • Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ (1984) Rostral ventrolateral medulla: selective projections to the thoracic autonomic cell column from the region containing C1 adrenaline neurons. J Comp Neurol 228:168–185

    PubMed  CAS  Google Scholar 

  • Ross CA, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242:511–534

    PubMed  CAS  Google Scholar 

  • Sakakibara R, Hattori T, Tojo M, Yamanishi T, Yasuda K, Hirayama K (1993) Micturitional disturbance in multiple system atrophy. Jpn J Psychiatry Neurol 47:591–598

    PubMed  CAS  Google Scholar 

  • Sakakibara R, Hattori T, Tojo M, Yamanishi T, Yasuda K, Hirayama K (1995) The location of the paths subserving micturition: studies in patients with cervical myelopathy. J Auton Nerv Syste 55:165–168

    CAS  Google Scholar 

  • Sakakibara R, Hattori T, Yasuda K, Yamanishi T (1996a) Micturitional disturbance after acute hemispheric stroke: analysis of the lesion site by CT and MRI. J Neurol Sci 137:47–56

    PubMed  CAS  Google Scholar 

  • Sakakibara R, Hattori T, Yasuda K, Yamanishi T (1996b) Micturitional disturbance and the pontine tegmental lesion; urodynamic and MRI analyses of vascular cases. J Neurol Sci 141:105–110

    PubMed  CAS  Google Scholar 

  • Sakakibara R, Hattori T, Fukutake T, Mori M, Yamanishi T, Yasuda K (1998) Micturitional disturbance in herpetic brainstem encephalitis; contribution of the pontine micturition centre. J Neurol Neurosurg Psychiatry 64:269–272

    PubMed Central  PubMed  CAS  Google Scholar 

  • Saper CB (2002) The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci 25:433–469

    PubMed  CAS  Google Scholar 

  • Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Res 117:305–312

    PubMed  CAS  Google Scholar 

  • Sawchenko PE (1983) Central connections of the sensory and motor nuclei of the vagus nerve. J Auton Nerv Syst 9:13–26

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260–272

    PubMed  CAS  Google Scholar 

  • Scott TR, Plata-Salaman CR (1999) Taste in the monkey cortex. Physiol Behav 67:489–511

    PubMed  CAS  Google Scholar 

  • Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET (1986) Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J Neurophysiol 56:876–890

    PubMed  CAS  Google Scholar 

  • Shapiro RE, Miselis RR (1985) The central organization of the vagus nerve innervating the stomach of the rat. J Comp Neurol 238:473–488

    PubMed  CAS  Google Scholar 

  • Shy GM, Drager GA (1960) A neurological syndrome associated with orthostatic hypotension. Arch Neurol 2:511–527

    PubMed  CAS  Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spyer KM (1981) Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol 88:23–124

    Google Scholar 

  • Spyer KM (1990) The central nervous organization of reflex circulatory control. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp 168–188

    Google Scholar 

  • Strack AM, Loewy AD (1990) Pseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system. J Neurosci 10:2139–2147

    PubMed  CAS  Google Scholar 

  • Sung JH, Mastri AR, Segal E (1979) Pathology of Shy-Drager syndrome. J Neuropathol Exp Neurol 38:353–368

    PubMed  CAS  Google Scholar 

  • Sved AF, Cano G, Card JP (2001) Neurochemical specificity of the circuits controlling sympathetic outflow to different targets. Clin Exp Pharmacol Physiol 28:115–119

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    PubMed  CAS  Google Scholar 

  • ten Donkelaar HJ, Vermeij-Keers C, Lohman AHM (2007a) Hoofd en hals. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, pp 545–727 (in Dutch)

    Google Scholar 

  • ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007b) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Amsterdam, Elsevier, pp 981–1141 (in Dutch)

    Google Scholar 

  • ter Horst GJ, Luiten PGM, Kuipers F (1984) Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J Auton Nerv Syst 11:59–75

    PubMed  Google Scholar 

  • Tryfon S, Kontakiotis T, Mavrofridis E, Patakas D (2001) Hering-Breuer reflex in normal adults and in patients with chronic obstructive pulmonary disease and interstitial fibrosis. Respiration 68:140–144

    PubMed  CAS  Google Scholar 

  • Tucker DC, Saper CB (1985) Specificity of spinal projections from hypothalamic and brainstem areas which innervate sympathetic preganglionic neurons. Brain Res 360:159–164

    PubMed  CAS  Google Scholar 

  • van Ingelghem E, van Zandijcke M, Lammens M (1994) Pure autonomic failure: a new case with clinical, biochemical, and necropsy data. J Neurol Neurosurg Psychiatry 57:45–747

    Google Scholar 

  • VanderHorst VGJM, Mouton LJ, Blok BFM, Holstege G (1996) Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. J Comp Neurol 376:361–385

    PubMed  CAS  Google Scholar 

  • Wall PD, Melzack R (eds) (1985) Textbook of pain. ­Churchill-Livingstone, Edinburgh

    Google Scholar 

  • Wang FB, Holst M-C, Powley TL (1995) The ratio of pre- to postganglionic neurons and related issues in the autonomic nervous system. Brain Res Rev 21:93–115

    PubMed  CAS  Google Scholar 

  • Westlund KN, Coulter JD (1980) Descending projections of the locus coeruleus and subcoeruleus/medial parabrachial nuclei in monkey: axonal transport studies and dopamine-β-hydroxylase immunocytochemistry. Brain Res Rev 2:235–264

    CAS  Google Scholar 

  • Willinger M, James LS, Catz C (1991) Defining the sudden infant death syndrome (SIDS): deliberations of an expert panel convened by the National Institute of Child Health and Development. Pediatr Pathol 15:677–684

    Google Scholar 

  • Willis WD Jr, Coggeshall RE (1991) Sensory mechanisms of the spinal cord, 2nd edn. Plenum, New York

    Google Scholar 

  • Yaguchi H, Soma H, Miyazaki Y, Tashiro J, Yabe I, Kikuchi S, Sasaki H (2004) A case of urinary retention caused by periaqueductal grey lesion. J Neurol Neurosurg Psychiatry 75:1200–1207

    Google Scholar 

  • Yasui Y, Saper CB, Cechetto DF (1989) Calcitonin gene-related peptide immunoreactivity in the visceral sensory cortex, thalamus, and related pathways in the rat. J Comp Neurol 290:487–501

    PubMed  CAS  Google Scholar 

  • Yasui Y, Saper CB, Cechetto DF (1991) Calcitonin gene-related peptide (CGRP) immunoreactive projections from the thalamus to the striatum and amygdala in the rat. J Comp Neurol 308:293–310

    PubMed  CAS  Google Scholar 

  • Yaxley S, Rolls ET, Sienkiewicz ZJ (1990) Gustatory responses of single neurons in the insula of the macaque monkey. J Neurophysiol 63:689–700

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J. (2011). The Autonomic Nervous System. In: Clinical Neuroanatomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19134-3_12

Download citation

Publish with us

Policies and ethics