Skip to main content

Topographic RossbyWaves in Basins of Simple Geometry

  • Chapter
  • First Online:
Physics of Lakes

Abstract

In the last chapter, topographic Rossby-waves on the f-plane were studied with emphasis of their mathematical description as extracted from the governing equations of fluid mechanics. Their possible observation by synoptic measurements was also discussed: they pertain to horizontal velocity and temperature-time series from moored thermistor chains and current recorders. It was shown by appropriately scaling the adiabatic Boussinesq approximated equations that in lakes with shallow epilimnion and deep hypolimnion – more specifically lakes which satisfy the so-called Gratton-scaling – the barotropic-baroclinic coupling is one-sided from the barotropic to the baroclinic TWs but not vice versa. In other words, if a topographic wave or a free or wind-induced oscillation in a lake, whose spectral component can be associated with a barotropic topographic wave mode, is acting in a lake, then this spectral component exerts a sizeable effect on the vertical baroclinic water movement which is (in principle) measurable in isotherm–depth–time series. Conversely, a baroclinic wave signal has a negligible influence on the barotropic TW response. This implies that for all those lakes whose geometry and stratification falls into the range of Gratton’s scaling – most Alpine lakes satisfy this scaling – the spectral structure can be found from the spectral analysis of the TW-operator, yet observational inferences can be drawn not only from cross-correlation analyses of moored current meters but equally also from such analyses involving isotherm–depth or temperature–time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The thalweg of an elongated lake is the line which follows the deepest points of the basin cross sections. For simple shapes and simple bathymetries (ellipses with parabolic bottom surface, rectangles, etc.) the thalweg can readily be defined. For arbitrary basins the thalweg cannot be defined this way. In those cases, the lake axis is a line roughly defining the middle between opposite shores.

  2. 2.

    With \({\psi }_{ij} = {\psi }_{ij}^{(0)}{\mathrm{e}}^{-\mbox{ i}\sigma t}\) (i, j = 0, 1), (20.36) can be transformed to a homogeneous linear system for ψ ij (0) which possesses a solution provided that its determinant vanishes. Equation (20.37) makes this determinant to vanish.

  3. 3.

    Equation (20.48) implies that \(B = -A\tan (\lambda {\xi }_{S})\), and then (20.49) yields \((\tan (\lambda {\xi }_{I}) -\tan (\lambda {\xi }_{S})) = 0\), or tan(λξ S ) = tan(λξ I ) so, \(\lambda {\xi }_{S} = (\lambda {\xi }_{I} + n\pi ),\,n = 1, 2,\ldots \).

  4. 4.

    Clearly, in elliptical coordinates ξ ≥ 0. Continuity of a quantity ϕ(ξ, η) ‘across’ ξ = 0 means \({\lim }_{\xi \downarrow 0}\phi (\xi , 2\pi - \eta ) {=\lim }_{\xi \downarrow 0}\phi (\xi ,\eta ),\; 0 < \eta < 2\pi \).

  5. 5.

    A source where second class waves in the ocean are studied is LeBlond and Mysak [19]. Additional works are e.g. by Allen [2], Brink [56], Djurfeldt [9], Gratton [10], Gratton and LeBlond [11], Huthnance [13], Koutitonsky [16], Lie [20], Lie and El-Sabh [21], Mysak [2526], Ou [29], Takeda [40] and others.

  6. 6.

    [​[ϕ(y)]​] at y = s denotes the jump of the quantity ϕ defined by

    $$[\![\phi (s)]\!] {=\lim }_{\epsilon \downarrow 0}(\phi (s + \epsilon ) - \phi (s - \epsilon )).$$
  7. 7.

    Right-bounded means that the shallower region is to the right when looking into the direction of phase propagation.

  8. 8.

    Because of its significance h′ ∕ h is often referred to as slope parameter S ≡ h′ ∕ h.

  9. 9.

    See the transformation formulae (20.12) and Fig. 20.1 and compare the TW-equation in Cartesian, (20.5) and (20.6), and in elliptical (20.12) coordinates.

  10. 10.

    An identical equation as that for F can also be obtained for G if

    $$\begin{array}{rcl} \chi = - \frac{1} {{\eta }_{R} - {\eta }_{L}}\eta - \frac{{\eta }_{R} + {\eta }_{L}} {2({\eta }_{R} - {\eta }_{L})} + \frac{2\pi } {{\eta }_{R} - {\eta }_{L}}& & \\ \end{array}$$

    is chosen.

  11. 11.

    The text below follows Stocker [38] with some minor changes.

References

  1. Abramowitz, M. and Stegun, I. A.: Handbook of mathematical functions. Dover (1972)

    Google Scholar 

  2. Allen, J. S.: Coastal trapped waves in a stratified ocean. J. Phys. Oceanogr., 5, 300–325 (1975)

    Article  Google Scholar 

  3. Ball, K. F.: Second class motions of a shallow liquid. J. Fluid Mech., 23, 545–561 (1965)

    Article  Google Scholar 

  4. Ball, K. F.: Edge waves in an ocean of finite depth. Deep Sea Res., 14, 79–88 (1967)

    Google Scholar 

  5. Brink, K. H.: Propagation of barotropic continental shelf waves over irregular bottom topography. J. Phys. Oceanogr., 10, 765–778 (1980)

    Article  Google Scholar 

  6. Brink, K. H.: A comparsion of long coastal trapped wave theory with observations of Peru. J. Phys. Oceanogr., 12, 897–913 (1982)

    Article  Google Scholar 

  7. Buchwald, V. T. and Adams J. K.: The propagation of continental shelf waves. Proc. Roy. Soc., A305, 235–250 (1968)

    Article  Google Scholar 

  8. Buchwald, V. T. and Melville, W. K.: Resonance of shelf waves near islands. In Lecture Notes in Physics, vol. 64, edited by D.G. Provis and R. Radok, 202–205, Springer, New York (1977)

    Google Scholar 

  9. Djurfeldt, L.: A unified derivation of divergent second-class topographic waves. Tellus, 36A, 306–312 (1984)

    Google Scholar 

  10. Gratton, Y.: Low frequency vorticity waves over strong topography. Ph.D. thesis, Univ. of British Columbia, 132 pp. (1983)

    Google Scholar 

  11. Gratton, Y. and LeBlond, P. H.: Vorticity waves over strong topography. J. Phys. Oceanogr., 16, 151–166 (1986)

    Article  Google Scholar 

  12. Hogg, H. G.: Observations of internal Kelvin waves trapped round Bermuda. J. Phys. Oceanogr., 10, 1353–1376 (1980)

    Article  Google Scholar 

  13. Huthnance, J. M.: On trapped waves over a continental shelf. J. Fluid Mech., 69, 689–704 (1975)

    Article  Google Scholar 

  14. Johnson, E. R.: Topographic waves in elliptical basins. Geophys. Astrophys. Fluid Dyn., 37, 279–295 (1987a)

    Article  Google Scholar 

  15. Johnson, E. R.: A conformal mapping technique for topographic wave problems. J. Fluid Mech., 177, 395–405 (1987b)

    Article  Google Scholar 

  16. Koutitonsky, V. G.: Subinertial coastal-trapped waves in channels with variable stratification and topography PH.D. thesis, Marine Sciences Res. Center, State Univ. New York, Stony Brook (1985)

    Google Scholar 

  17. Lamb, H.: Hydrodynamics. 6th ed. Cambridge University Press (1932)

    Google Scholar 

  18. Larsen, J. C.: Long waves along a single-step topography in a semi-infinite uniformly rotating ocean. J. Mar. Res., 27, 1–6 (1969)

    Google Scholar 

  19. LeBlond, P. H. and Mysak, L. A.: Waves in the Ocean. Elsevier (1980)

    Google Scholar 

  20. Lie, H.-J.: Shelf waves on the exponential, linear and sinusoidal bottom topographies. Bull: KORD1, 5, 1–8 (1983)

    Google Scholar 

  21. Lie, H.-J. and El-Sabh, M. I.: Formation of eddies and transverse currents in a two-layer channel of variable bottom: Applications to the lower St. Lawrence estuary. J. Phys. Oceanogr., 10, 1063–1075 (1983)

    Google Scholar 

  22. Miles, J. W. and Ball, F. K.: On free-surface oscillations in a rotating paraboloid. J. Fluid Mech., 17, 257–266 (1963)

    Article  Google Scholar 

  23. Mysak, L. A.: On the theory of continental shelf waves. J. Mar. Res., 25, 205–227 (1967)

    Google Scholar 

  24. Mysak, L.A.: Edgewaves on a gently sloping continental shelf of finite width. J. Mar. Res., 26, 24–33 (1968)

    Google Scholar 

  25. Mysak, L. A.: Topographically trapped waves. Ann. Rev. Fluid Mech., 12, 45–76 (1980a)

    Article  Google Scholar 

  26. Mysak, L. A.: Recent advances in shelf wave dynamics. Review of Geophysics and Space Physics, 18, 211–241 (1980b)

    Article  Google Scholar 

  27. Mysak, L. A.: Elliptical topographic waves. Geophs. Astrophys. Fluid Dyn., 31, 93–135 (1985)

    Article  Google Scholar 

  28. Mysak, L. A., Salvadè, G., Hutter, K. and Scheiwiller, T.: Topographic waves in an elliptical basin with application to the Lake of Lugano. Phil. Trans. R. Soc. London, A 316, 1–55 (1985)

    Google Scholar 

  29. Ou, H. W.: On the propagation of the topographic Rossby waves near continental margins. Part 1: Analytical model for a wedge. J. Phys. Oceanogr., 19, 1051–1060 (1980)

    Google Scholar 

  30. Pearson, C. E.: Handbook of Applied Mathematics. VNR Company (1974)

    Google Scholar 

  31. Reid, R. O.: Effect of Coriolis force on edge waves. I: Investigation of the normal modes. J. Mar. Res., 16, 104–144 (1958)

    Google Scholar 

  32. Rhines, P. B.: Slow oscillations in an ocean of varying depth. J. Fluid Mech., 37, 161–205 (1969)

    Article  Google Scholar 

  33. Saint-Guily, B.: Oscillations propres dans un bassin de profondeur variable: Modes de seconde classe. In Studi in Onore di Giuseppe Aliverti, 15–25. Instituto Universitario Navale di Napoli, Napoli, Italy (1972)

    Google Scholar 

  34. Saylor, J. H., Huang, J. S. K. and Reid, R. O.: Vortex modes in Southern Lake Michigan. J. Phys. Oceanogr., 10, 1814–1823 (1980)

    Article  Google Scholar 

  35. Sezawa, K. and Kanai, K.: On shallow water waves transmitted in the direction parallel to a sea coast with special reference to long waves in heterogeneous media. Bull. Earthquake Res. Inst. Tokyo, 17, 685–694 (1939)

    Google Scholar 

  36. Snodgrass, F. E., Munk, W. H. and Miller, G. R.: Long-period waves over California’s continental borderland. I: Background spectra. J. Mar. Res., 20, 3–30 (1962)

    Google Scholar 

  37. Stocker, T. and Hutter, K.: A model for topographic Rossby waves in channels and lakes. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, No 76, 1–154 (1985)

    Google Scholar 

  38. Stocker, T.: Topographic waves, eigenmodes and reflections in lakes and semi-infinite channels. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, No 93, 1–170 (1987)

    Google Scholar 

  39. Stocker, T and Hutter, K.: Topographic waves in channels and lakes on the f-plane. Lecture Notes on Ccoastal and Estuarine Studies, Springer Verlag, Berlin etc., 21, 1–178 (1987)

    Google Scholar 

  40. Takeda, H.: Topographically trapped waves over the continental shelf and slope. J. Oceanogr. Soc. Japan, 40, 349–366 (1984)

    Article  Google Scholar 

  41. Trösch, J.: Finite element calculation of topographic waves in lakes. Proceedings of the 4th Internnatl. Conf. Applied Numerical Methods, Tainan, Taiwan (1988)

    Google Scholar 

  42. Wenzel, M.: Interpretation der Wirbel im Bornholm becken durch topographische Rossby Wellen in einem Kreisbecken. Diplomarbeit, Christian Albrechts Universität Kiel. 52 pp. (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hutter, K., Wang, Y., Chubarenko, I.P. (2011). Topographic RossbyWaves in Basins of Simple Geometry. In: Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19112-1_20

Download citation

Publish with us

Policies and ethics