Skip to main content

Higher-Order Baroclinicity (II)Interpretation of Lake Data with Rotating and Non-rotating Models

  • Chapter
  • First Online:
  • 898 Accesses

Part of the book series: Advances in Geophysical and Environmental Mechanics and Mathematics ((AGEM,volume 2))

Abstract

In parts A and B of the last chapter, two sources of higher order baroclinicity were looked at (1) a two-layer fluid system with a diffusive interface and (2) a three-layer configuration with two sharp interfaces due to the presence of a thermocline and a chemocline. In this chapter we give further field evidences of higher order baroclinicity. Both cases are to a certain extent idealized; in a realistic situation, density changes are generally less abrupt and should be represented by using a thermal equation of state ρ = ρ(T, s) from measured temperature and electrical conductivity profiles. If this argument is consistently adopted, this would, strictly, mean that a numerical model for a stratified lake should be based on a multi-layer model, e.g. with linear density variation across each layer. For reasons of accurate determination of the phase speeds of the higher baroclinic seiche, this should be done so, even if only fundamental (V1) and first higher order (V2) modes are of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    V1 and V2, etc., stand for vertical mode 1, mode 2, etc.; similarly, H1, H2, etc., stand for horizontal mode 1, mode 2, etc.

  2. 2.

    The authors present the analysis, which was already given by Longuet–Higgins in Mortimer [36] and by Heaps [17].

  3. 3.

    The authors do not specify in their paper how these profiles were determined from the measured temperature time series of the thermistors in the thermistor chains during the June/July 1992 summer campaign.

  4. 4.

    By varying the profiles slightly, they found \({T}_{1,1} \in (7.7\mbox{ \textendash }8.8)\) h and \({T}_{1,2} \in (22.2\mbox{ \textendash }25.7)\) h and conclude that their results corroborate their physical interpretation.

  5. 5.

    Saggio and Imberger [46], Antenucci et al. [3], Antenucci and Imberger [12], Boegman et al. [1112], Appt et al. [4], Shimizu et al. [50], Shimizu and Imberger [5152].

  6. 6.

    The model was also used with the actual bathymetry of Lake Biwa and the measured winds during the experiment in 1993. The corresponding analysis is not reported by Saggio and Imberger [46] but was presented in a Ph.D. dissertation by Ogihara [42]. It is claimed also elsewhere in the manuscript that inferences from these results are less convincing. We have not had access to this work.

  7. 7.

    Figure 16.14 shows the spectra for the 13 and 19 ∘ C isotherm depths at BN50 obtained with the model, and representative for the centre of the metalimnion and the hypolimnion, respectively. Peaks (i) and (ii) are reminiscent of V2 and V1 Kelvin-type behaviour, whilst (iii)–(v) are likely HmV1 (m = 2, 3, 4) responses. These interpretations are likely, because at peak (i) vertical velocities (displacements) in the centre of the metalimnion are small, but large at peak (ii).

  8. 8.

    Saggio and Imberger call Kelvin and Poincaré behaviour what we call Kelvin-type and Poincaré-type behaviour.

  9. 9.

    We interpret the claims of Antenucci and Imberger [1] and Boegman et al. [11] for Lake Biwa and Kinneret as (perhaps strong) indications, but not as proofs of their existence. The vertical resolution from temperature–time series of thermistor chains with much denser distribution of the thermistors with depth are necessary, to claim with certainty that V n -modes with n > 2 can be isolated.

References

  1. Antenucci, J.P. and Imberger, J.: Energetics of long internal gravity waves in large lakes. Limnol. Oceanogr. 46(7), 1760–1773 (2001)

    Google Scholar 

  2. Antenucci, J.P. and Imberger, J.: On internal waves near the high-frequency limit in an enclosed basin. J. Geophys. Res, 106, C10, 22465–22474 (2001)

    Google Scholar 

  3. Antenucci, J.P., Imberger, J. and Saggio, A.: Seasonal evolution of the basin-scale internal wave field in a large stratified lake. Limnol. Oceanogr., 45, 1621–1638 (2000)

    Article  Google Scholar 

  4. Appt, J., Imberger, J. and Kobus, H.: Basin-scale motion in stratified Upper Lake Constance. Limnol. Oceanogr., 49(4), 919–933 (2004)

    Article  Google Scholar 

  5. Barrondale, I. and Erickson, R.: Algorithms for least-squares linear prediction and maximum entropy spectral analysis. Part 2: Fortran Program. Geophysics, 45, 433–446 (1980)

    Google Scholar 

  6. Bauer, G., Diebels, S. and Hutter, K.: Nonlinear internal waves in ideal rotating basins. Geophys. Astrophys. Fluid Dyn., 78, 21–46 (1994)

    Article  Google Scholar 

  7. Bäuerle, E.: Die Eigenschwingungen abgeschlossener, zweigeschichteter Wasserbecken mit variabler Topographie. Berichte aus dem Institut für Meereskunde, Kiel, 85, 126p (1981)

    Google Scholar 

  8. Bäuerle, E.: Internal free oscillations in the Lake of Geneva. Ann. Geophysicae, 3, 199–206 (1985)

    Google Scholar 

  9. Bäuerle, E.: Transverse baroclinic oscillations in Lake Überlingen. Aquatic Sci., 56, 145–160 (1994)

    Article  Google Scholar 

  10. Bäuerle, E., Ollinger, D. and Ilmberger, J.: Some meteorological, hydrological, and hydrodynamical aspects of Upper Lake Constance. Arch. Hydrobiol. Sopec. Issues Adv. Limnol., 53, 31–83 (1998)

    Google Scholar 

  11. Boegman, L. Imberger, J. Ivey, G.N. and Antenucci, J.P.: High-frequency internal waves in large stratified lakes. Limnol.Oceanogr., 48(2), 895–919 (2003)

    Google Scholar 

  12. Boegman, L. Ivey, G.N. and Imberger, J.: The energetics of large-scale internal wave degeneration in lakes. J. Fluid. Mech., 531, 159–180 (2005)

    Article  Google Scholar 

  13. Casulli, V. and Cattani, E.: Stability, accuracy and efficiency of a semi-implicit method for three-dimensional shallow water flow. Comput. Math. Applic., 27, 99–112 (1994)

    Article  Google Scholar 

  14. Casulli, V. and Cheng, R.T.: Semi-implicit finite difference method for three- dimensional shallow water flow. Int. J. Numerical Methods Fluids, 15, 629–648 (1992)

    Article  Google Scholar 

  15. Goldstein, S.: Tidal motion in rotating elliptical basins of constant depth. Monthly Notices R. Atron. Soc. (Geophys. Supp.), 2, 213–231 (1929)

    Google Scholar 

  16. Gloor, M., Wüest, A. and Münnich, M.: Benthic boundary mixing and resuspension induced by internal seiches. Hydrobiologia, 284, 59–68 (1994)

    Article  Google Scholar 

  17. Heaps, N.S.: Seiches in a narrow lake, uniformly stratified in three layers. Geophys. Suppp. R. Astron. Soc., 5, 134–156 (1961)

    Article  Google Scholar 

  18. Heaps, N.S.: Development of a three-layered spectral model for the motion of a stratified shelf sea. I. Basic equations. In:Physical Oceanography of Coastal and Shelf Seas (ed.: B. Johns). Amsterdam Elsevier, 386–400 (1983)

    Google Scholar 

  19. Heaps, N.S.: Development of a three-layered spectral model for the motion of a stratified shelf sea. II. Experiments with a rectangular basin representing the Celtic Sea. In: Physical Oceanography of Coastal and Shelf Seas (ed.: B. Johns). Amsterdam Elsevier, 401–465 (1983)

    Google Scholar 

  20. Heinz, G.: Strömungen im Bodensee. Ergebnisse einer Messkampagne im Herbst 1993. Mitt. Versuchsanstalt für Wasserbau, Hydrologie & Glaziologie an der ETH Zürich (Ed.: D. Vischer), 135 (1995)

    Google Scholar 

  21. Hodges, B.R. and Dallimore, C.J.: Estuary and lake computer model. ELCOM scence manual code (Version 1.5.) Centre for Water Research, University of Western Australia (2001)

    Google Scholar 

  22. Hodges, B.R., Imberger, J., Saggio, A. and Winters, K.B.: Modeling basin-scale internal waves in a stratified lake. Limnol. Oceanogr., 45(4), 1603–1620 (2000)

    Article  Google Scholar 

  23. Hollan, E.: Wind-induced motions in Lake Constance. Bericht der AWBR, 6, 111–187 (1974)

    Google Scholar 

  24. Horn, W., Mortimer, C.H. and Schwab, D.J.: Wind-induced internal seiches in the Lake of Zürich observed and modelled. Limnol. Oceanogr., 31(6), 1230–1252 (1986)

    Article  Google Scholar 

  25. Huss, E. and Stranz, D.: die Windverhältnisse am Bodensee. Pure, Appl. Geophys., 81, 323–56 (1970)

    Google Scholar 

  26. Hutter, K., Salvadè, G. and Schwab, D.J.: On internal wave dynamics in the Northern Basin of the Lake of Lugano. Geophys. Astrophys. Fluid Dyn., 27, 299–336 (1983)

    Article  Google Scholar 

  27. Hutter, K., Bauer, G., Wang, Y. and Güting, P.: Forced motion response in enclosed lakes. In: Amer. Geophys. Union, Coastal and Estuarine Studies. Physical Processes in Lakes and Oceans (Ed.: J. Imberger), 54, 137–166 (1998)

    Google Scholar 

  28. Jeffreys, H.: The free oscillations of water in an elliptical lake. Proc. Lond. Math. Soc., 23, 455–476 (1925)

    Article  Google Scholar 

  29. Kanari, S.: The long internal waves in Lake Biwa. Limnol. Oceanogr., 20, 544–553 (1975)

    Article  Google Scholar 

  30. LaZerta, B.D.: The dominating higher order vertical modes of the internal seiche in a small lake. Limnol.Oceanogr., 25(5), 846–854 (1980)

    Google Scholar 

  31. Laval, B., Imberger, J., Hodges, B.R. and Stocker, R.: Modeling circulation in lakes: Spatial and tempral variations. Limnol. Oceanogr., 48(3), 983–994 (2003)

    Article  Google Scholar 

  32. LeBlond, P.H. and Mysak, L.A.: Waves in the Ocean. Elsevier Oceanogr. Ser., Elsevier Scientific Publ. Co., Amsterdam, Oxford. New York (1978, 1980)

    Google Scholar 

  33. Lemmin, U. and Mortimer, C.H.: Tests of an extension to internal seiches of Defant’s procedure for determination of surface seiche characteristics in real lakes. Limnol. Oceanogr., 31(6), 1207–1231 (1986)

    Article  Google Scholar 

  34. Lemmin, U., Mortimer, C.H. and Bäuerle, E.: Internal seiche dynamics in Lake Geneva. Limnol. Oceanogr., 50(1), 207–216 (2005)

    Article  Google Scholar 

  35. MacIntire, S., Flynn, K.M., Jellison, R. and Romero, J.R.: Boundary mixing and nutrient fluxes in Mono Lake, California. Limnol. Oceanogr., 44, 512–529 (1999)

    Article  Google Scholar 

  36. Mortimer, C.H.: The resonant responses of stratified lakes to wind. Schweiz. Z. Hydrol., 15, 94–151 (1953)

    Google Scholar 

  37. Mortimer, C.H.: Lake Hydrodynamics. Mitt. Int. V. Theor. Angew. Limnol., 20, 124–197 (1974)

    Google Scholar 

  38. Mortimer, C.H.: Strategies for coupling data collection and analysis with the dynamic modeling of lake motions. In: Lake Hydrodynamics (Eds. W.H. Graf and C.H. Mortimer), Elsevier, Amsterdam, 183–222E (1979)

    Google Scholar 

  39. Mortimer, C.H.: Lake Michigan in Motion. Responses of an Inland Sea to Weather, Earth-Spin, and Human Activities. The University of Wisconsin Press, 311 pp (2004)

    Google Scholar 

  40. Mühleisen, R.: Starkwinde an und auf dem Bodensee. Meteorol. Rundschau, 30, 15–22 (1977)

    Google Scholar 

  41. Münnich, M., Wüest, A. and Imboden, D.M.: Observations of the second vertical mode of the internal seiche in an alpine lake. Limnol. Oceanogr., 37(8), 1705–1719 (1992)

    Article  Google Scholar 

  42. Ogihara, Y.: Internal Wave Energy Distribution. Ph. D. Thesis, University of Western Australia (1998)

    Google Scholar 

  43. Ollinger, D.: Modellierung von Temperatur, Turbulenz und Algenwachstum mit einem gekoppelten physikalisch-biologischen Modell. Doctoral Disseratation, Ruprechts-Karls Univertiät Heidelberg (1999)

    Google Scholar 

  44. Roget, E.: Internal Seiches and Baroclinic Currents in Lake Banyoles. Ph. D. Thesis, Autonomous University, Barcelona, 287p (1992)

    Google Scholar 

  45. Roget, E., Salvadè, G. and Zamboni, F.: Internal seiche climatology in a small lake where transversal and second vertical modes are usually observed. Limnol.Oceanogr., 42(4), 663–673 (1997)

    Google Scholar 

  46. Saggio, A. and Imberger, J.: Internal wave weather in a stratified lake. Limnol. Oceanogr., 43(8), 1780–1795 (1998)

    Google Scholar 

  47. Schimmele, M.: Anregung interner Seiches im Bodensee durch den Wind. Doctoral dissertation, Ruprecht-Karls Universität Heidelberg (1993)

    Google Scholar 

  48. Serruya, S., Hollan, E. and Bitsch B.: Steady winter circulation in Lakes Constance and Kinneret driven by wind and main tributaries. Archiv für Hydrobiologie, Suppl. 70(1), 33–110 (1984)

    Google Scholar 

  49. Stocker, K., Hutter, K., Salvadè, G., Trösch, J. and Zamboni, F.: Observations and analysis of internal seiches in the Southern Basin of Lake of Lugano. Ann Geophysicae, 5B, 553–568 (1987)

    Google Scholar 

  50. Shimizu, K., Imberger, J. and Kumagai, M.: Horizontal structure and excitation of primary motions in a strongly stratified lake. Limnol. Oceanogr., 52(6), 2641–2655 (2007)

    Article  Google Scholar 

  51. Damping mechanisms of internal waves in continuously stratified rotating basins. J. Fluid. Mech. 637, 137–172 (2009)

    Google Scholar 

  52. Shimizu, K. and Imberger, J.: Energetics and damping of basin-scale internal waves in a strongly stratified lake. Limnol. Oceanogr., 53(4), 1574–1588 (2008)

    Article  Google Scholar 

  53. Trampe, J.: Principles of analog and digital frequency analysis. Norwegian Institute of Technology (1981)

    Google Scholar 

  54. Wiegand, R.C. and Chamberlain, V.: Internal waves of the second vertical mode in a stratified lake. Limnol. Oceanogr. 32(1), 29–42 (1987)

    Google Scholar 

  55. Wang, Y., Hutter, K. and Bäuerle, E.: Wind-induced baroclinic response of Lake Constance. Annales Geophysicae, 18, 1488–1501 (2000)

    Article  Google Scholar 

  56. Zenger, A., Anker, W., Ilmberger, J. and Münnich, K.-O.: Die Untersuchungen der Windverhältnisse im westlichen Teil des Bodensees und die Untersuchung von Landwinden auf Seebedingungen. Meteorol. Rundschau., 42, 42–51 (1990)

    Google Scholar 

  57. Zenger, A., Ilmberger, J., Heinz, G., Schimmele, M. and Münnich, K.-O.: Struktur der internen Seiches des Bodensees. Wasserwirtschaft, 79, 616–623 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hutter, K., Wang, Y., Chubarenko, I.P. (2011). Higher-Order Baroclinicity (II)Interpretation of Lake Data with Rotating and Non-rotating Models. In: Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19112-1_16

Download citation

Publish with us

Policies and ethics