Lichens and Bryophytes: Habitats and Species

  • Michael LakatosEmail author
Part of the Ecological Studies book series (ECOLSTUD, volume 215)


Poikilohydric desiccation tolerance enables lichens and bryophytes to survive long periods of water limitation and to recover quickly by rehydration. The evolutionary success of this strategy is reflected by the fact that cryptogams inhabit almost all terrestrial habitats from the tropics to cold and hot deserts. As ecosystem components, lichens and bryophytes may considerably impact the surrounding environment through frequent desiccation–rewetting cycles. What are the differences in mechanism and functioning to successfully compete with vascular plants in many micro-sites and habitats? This chapter reviews key issues of cryptogamic desiccation tolerance with particular emphasis on the following aspects: (1) Comparison of mechanisms and processes of water exchange. (2) Function and impacts of micro-scale fluxes to illustrate the effects of desiccation–rewetting cycles on the environment. (3) Global patterns of lichens and bryophytes as an indication for their ecological relevance.


Relative Water Content Desiccation Tolerance Montane Cloud Forest Tropical Montane Cloud Forest Full Turgor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Acebey A, Gradstein S, Krömer T (2003) Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. J Trop Ecol 19:9–18CrossRefGoogle Scholar
  2. Affeld K, Sullivan J, Worner SP, Didham RK (2008) Can spatial variation in epiphyte diversity and community structure be predicted from sampling vascular epiphytes alone? J Biogeogr 35:2274–2288CrossRefGoogle Scholar
  3. Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695PubMedCrossRefGoogle Scholar
  4. Alpert P, Oliver M (2002) Drying without dying. In: Black M, Pritchard H (eds) Desiccation and survival in plants: drying without dying. CABI, Wallingford, pp 3–43CrossRefGoogle Scholar
  5. Aptroot A, van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ Pollut 146:293–298PubMedCrossRefGoogle Scholar
  6. Banerjee R, Sen S (1979) Antibiotic activity of bryophytes. Bryologist 82:141–153CrossRefGoogle Scholar
  7. Barbour MM, Hunt JE, Walcroft AS, Rogers GND, McSeveny TM, Whitehead D (2005) Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density. New Phytol 165:549–558PubMedCrossRefGoogle Scholar
  8. Bartels D (2005) Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol 45:696–701PubMedCrossRefGoogle Scholar
  9. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58CrossRefGoogle Scholar
  10. Basile A, Giordano S, López-Sáez J, Cobianchi R (1999) Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 52:1479–1482PubMedCrossRefGoogle Scholar
  11. Basile A, Sorbo S, López-Sáez J, Castaldo Cobianchi R (2003) Effects of seven pure flavonoids from mosses on germination and growth of Tortula muralis HEDW. (Bryophyta) and Raphanus sativus L. (Magnoliophyta). Phytochemistry 62:1145–1151PubMedCrossRefGoogle Scholar
  12. Basiliko N, Yavitt J (2001) Influence of Ni, Co, Fe, and Na additions on methane production in Sphagnum-dominated Northern American peatlands. Biogeochemistry 52:133–153CrossRefGoogle Scholar
  13. Bates JW (1998) Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82:223–237CrossRefGoogle Scholar
  14. Bates JW, Thompson K, Grime JP (2005) Effects of simulated long-term climatic change on the bryophytes of a limestone grassland community. Glob Change Biol 11:757–769CrossRefGoogle Scholar
  15. Beckett RP (1995) Some aspects of the water relations of lichens from habitats of contrasting water status studied using thermocouple psychrometry. Ann Bot 76:211–217CrossRefGoogle Scholar
  16. Beckett RP (1996) Some aspects of the water relations of the coastal lichen Xanthoria parietina (L) TH FR. Acta Physiol Plant 18:229–234Google Scholar
  17. Beckett RP (1997) Pressure-Volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Ann Bot 79:145–152CrossRefGoogle Scholar
  18. Beckett RP, Csintalan Z, Tuba Z (2000) ABA treatment increases both the desiccation tolerance of photosynthesis, and nonphotochemical quenching in the moss Atrichum undulatum. Plant Ecol 151:65–71CrossRefGoogle Scholar
  19. Belnap J, Lange O (2001) Biological soil crusts: structure, function, and management. Springer, BerlinCrossRefGoogle Scholar
  20. Belnap J, Phillips SL, Miller ME (2004) Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141:306–316PubMedCrossRefGoogle Scholar
  21. Belnap J, Phillips SL, Flint S, Money J, Caldwell M (2008) Global change and biological soil crusts: effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions. Glob Change Biol 14:670–686CrossRefGoogle Scholar
  22. Berbigier P, Bonnefond JM, Loustau D, Ferreira MI, David JS, Pereira JS (1996) Transpiration of a 64-year old maritime pine stand in Portugal. Oecologia 107:43–52CrossRefGoogle Scholar
  23. Bergamini A, Ungricht S, Hofmann H (2009) An elevational shift of cryophilous bryophytes in the last century – an effect of climate warming? Divers Distrib 15:871–879CrossRefGoogle Scholar
  24. Beringer J, Lynch AH, Chapin FS, Mack M, Bonan GB (2001) The representation of arctic soils in the land surface model: the importance of mosses. Journal of Climate 14:3324–3335CrossRefGoogle Scholar
  25. Bertsch A (1966a) CO2-Gaswechsel und Wasserhaushalt der aerophilen Grünalge Apatococcus lobatus. Planta 70:46–72CrossRefGoogle Scholar
  26. Bertsch A (1966b) Über den CO2-Gaswechsel einiger Flechten nach Wasserdampfaufnahme. Planta 68:157–166CrossRefGoogle Scholar
  27. Betts A (1999) Controls on evaporation in a boreal spruce forest. J Climate 12:1601–1618CrossRefGoogle Scholar
  28. Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1:355–359Google Scholar
  29. Bilger W, Rimke S, Schreiber U, Lange OL (1989) Inhibition of energy-transfer to photosystem II in lichens by dehydration: different properties of reversibility with green and blue-green phycobionts. J Plant Physiol 134:261–268Google Scholar
  30. Bisbee K, Gower S, Norman J, Nordheim E (2001) Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 129:261–270CrossRefGoogle Scholar
  31. Blum OB (1973) Water relation. In: Ahmadjian V, Hale ME (eds) The lichens, vol 2. Academic, New York, pp 381–400Google Scholar
  32. Bonan G (1989) Environmental factors and ecological processes controlling vegetation patterns in boreal forests. Landscape Ecol 3:111–130CrossRefGoogle Scholar
  33. Brock TD (1975) Effect of water potential on a Microcoleus from a desert crust. J Phycol 11:316–320Google Scholar
  34. Bubier J, Moore T, Juggins S (1995) Predicting methane emission from bryophyte distribution in northern Canadian peatlands. Ecology 76:677–693CrossRefGoogle Scholar
  35. Buch H (1945) Ueber die Wasser- und Mineralstoffversorgung der Moose I. Commentationes Biologicae 16:1–44Google Scholar
  36. Buch H (1947) Über die Wasser- und Mineralstoffversorgung der Moose II. Commentationes Biologicae 20:1–61Google Scholar
  37. Büdel B, Lange OL (1991) Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Bot Acta 104:361–366Google Scholar
  38. Buitink J, Hoekstra F, Leprince O, Black M (2002) Biochemistry and biophysics of tolerance systems. In: Black M, Pritchard H (eds) Desiccation and survival in plants: drying without dying. CABI, Wallingford, pp 293–318CrossRefGoogle Scholar
  39. Burkholder PR, Evans AW, McVeigh I, Thornton HK (1944) Antibiotic activity of lichens. Proc Natl Acad Sci USA 30:250–255PubMedCrossRefGoogle Scholar
  40. Butin H (1954) Physiologisch-ökologische Untersuchungen über den Wasserhaushalt und die Photosynthese von Flechten. Biologisches Zentralblatt 73:459–502Google Scholar
  41. Büttner R (1971) Untersuchungen zur Ökologie und Physiologie des Gasstoffwechsels bei einigen Strauchflechten. Flora 160:72–99Google Scholar
  42. Camill P, Lynch JA, Clark JS, Adams JB, Jordan B (2001) Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4:461–478CrossRefGoogle Scholar
  43. Carleton T, Read D (1991) Ectomycorrhizas and nutrient transfer in conifer- feather moss ecosystems. Can J Bot 69:778–785CrossRefGoogle Scholar
  44. Cavelier J, Goldstein G (1989) Mist and fog interception in elfin cloud forests in Colombia and Venezuela. J Trop Ecol 5:309–322CrossRefGoogle Scholar
  45. Cavelier J, Solis D, Jaramillo MA (1996) Fog interception in montane forest across the Central Cordillera of Panama. J Trop Ecol 12:357–369CrossRefGoogle Scholar
  46. Cienciala E, Running S, Lindroth A, Grelle A, Ryan M (1998) Analysis of carbon and water fluxes from the NOPEX boreal forest: comparison of measurements with FOREST-BGC simulations. J Hydrol 212:62–78CrossRefGoogle Scholar
  47. Clark KL, Nadkarni NM, Gholz HL (2005) Retention of inorganic nitrogen by epiphytic bryophytes in a tropical montane forest. Biotropica 37:328–336CrossRefGoogle Scholar
  48. Coley PD, Kursar TA, Machado J-L (1993) Colonization of tropical rain forest leaves by epiphylls: effects of site and host plant leaf lifetime. Ecology 74:619–623CrossRefGoogle Scholar
  49. Cornelissen JHC, Gradstein M (1990) On the occurence of bryophytes and macrolichens in different lowland rain forest types at Mabura Hill, Guyana. Trop Bryol 3:29–35Google Scholar
  50. Cornelissen J et al (2001) Global change and Arctic ecosystems: is lichen decline a function of increases in vascular plant biomass. J Ecol 89:984–994CrossRefGoogle Scholar
  51. Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001PubMedCrossRefGoogle Scholar
  52. Cowan DA, Green TGA, Wilson AT (1979) Lichen metabolism. 1. The use of tritium labelled water in studies of anhydrobiotic metabolism in Ramalina celastri and Peltigera polydactyla. New Phytol 82:489–503CrossRefGoogle Scholar
  53. Cowan IR, Lange OL, Green TGA (1992) Carbon-dioxide exchange in lichens: determination of transport and carboxylation characteristics. Planta 187:282–294CrossRefGoogle Scholar
  54. Cowles S (1982) Preliminary results investigating the effect of lichen ground cover on the growth of black spruce. Naturaliste Canadien (Canada) 109:573–581Google Scholar
  55. Crum H (2001) Structural diversity of bryophytes. University of Michigan, HerbariumGoogle Scholar
  56. DeLucia EH et al (2003) The contribution of bryophytes to the carbon exchange for a temperate rainforest. Glob Change Biol 9:1158–1170CrossRefGoogle Scholar
  57. Dilks TJK, Proctor MCF (1979) Photosynthesis, respiration and water content in bryophytes. New Phytol 82:97–114CrossRefGoogle Scholar
  58. Dorrepaal E, Aerts R, Cornelissen JHC, van Logtestijn RSP, Callaghan TV (2006) Sphagnum modifies climate-change impacts on subarctic vascular bog plants. Funct Ecol 20:31–41CrossRefGoogle Scholar
  59. Douma JC, Van Wijk MT, Lang SI, Shaver GR (2007) The contribution of mosses to the carbon and water exchange of arctic ecosystems: quantification and relationships with system properties. Plant Cell Environ 30:1205–1215PubMedCrossRefGoogle Scholar
  60. Edlich F (1936) Einwirkung von Temperatur und Wasser auf aerophile Algen. Arch Microbiol 7:62–109Google Scholar
  61. Elbert W, Weber B, Büdel B, Andreae MO, Pöschl U (2009) Microbiotic crusts on soil, rock and plants: neglected major players in the global cycles of carbon and nitrogen? Biogeosci Discuss 6:6983–7015CrossRefGoogle Scholar
  62. Eldridge DJ, Tozer ME (1997) Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid Eastern Australia. Bryologist 100:28–39Google Scholar
  63. Ellis CJ, Coppins BJ (2006) Contrasting functional traits maintain lichen epiphyte diversity in response to climate and autogenic succession. J Biogeogr 33:1643–1656CrossRefGoogle Scholar
  64. Elo H, Matikainen J, Pelttari E (2007) Potent activity of the lichen antibiotic (+)-usnic acid against clinical isolates of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. Naturwissenschaften 94:465–468PubMedCrossRefGoogle Scholar
  65. Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225CrossRefGoogle Scholar
  66. Farrar JF (1976) Ecological physiology of the lichen Hypogymnia physodes. II. Effects of wetting and drying cycles and the concept of physiological buffering. New Phytol 77:105–113CrossRefGoogle Scholar
  67. Feil W, Kottke I, Oberwinkler F (1988) The effect of drought on mycorrhizal production and very fine root system development of Norway spruce under natural and experimental conditions. Plant Soil 108:221–231CrossRefGoogle Scholar
  68. Fenton J (1980) The rate of peat accumulation in Antarctic moss banks. J Ecol 68:211–228CrossRefGoogle Scholar
  69. Feuerer T, Hawksworth D (2007) Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodivers Conserv 16:85–98CrossRefGoogle Scholar
  70. Flanagan LB, Kubien DS, Ehleringer JR (1999) Spatial and temporal variation in the carbon and oxygen stable isotope ratio of respired CO2 in a boreal forest ecosystem. Tellus B Chem Phys Meteorol 51:367–384CrossRefGoogle Scholar
  71. Fletcher BJ, Beerling DJ, Brentnall SJ, Royer DL (2005) Fossil bryophytes as recorders of ancient CO2 levels: experimental evidence and a cretaceous case study. Global Biogeochemical Cycles 19:GB3012, Artn Gb3012Google Scholar
  72. Forman RTT (1975) Canopy lichens with blue-green algae: a nitrogen source in a Colombian rain forest. Ecology 56:1176–1184CrossRefGoogle Scholar
  73. Frahm JP (2003) Climatic habitat differences of epiphytic lichens and bryophytes. Cryptogamic Bot 24:3–14Google Scholar
  74. Frahm J, Klaus D (2001) Bryophytes as indicators of recent climate fluctuations in Central Europe. Lindbergia 26:97–104Google Scholar
  75. Glime JM (2007) Bryophyte ecology. In: Physiological Ecology, vol. 1. sponsored by Michigan Technological University and the International Association of BryologistsGoogle Scholar
  76. Goffinet B (2000) Origin and phylogenetic relationships of bryophytes. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 124–149Google Scholar
  77. Gordon C, Wynn JM, Woodin SJ (2001) Impacts of increased nitrogen supply on high arctic heath: the importance of bryophytes and phosphorus availability. New Phytologist 149Google Scholar
  78. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195CrossRefGoogle Scholar
  79. Gradstein S (1995) Bryophyte diversity of the tropical rainforest. Archives des sciences [Société de physique et d’histoire naturelle de Genève] 48:91–96Google Scholar
  80. Gradstein SR (2006) The lowland cloud forest of French Guiana – a liverwort hotspot. Cryptogamie Bryologie 27:141–152Google Scholar
  81. Gradstein S, Churchill S, Salazar-Allen N (2001) Guide to the bryophytes of tropical America. New York Botanical Garden Press, Bronx, NYGoogle Scholar
  82. Gradstein S, Obregon A, Gehrig C, Bendix J (2010) Tropical lowland cloud forest – a neglected forest type. In: Bruijnzeel S, Scatena FN, Hamilton LS, Juvik J (eds) Mountains in the mist. Cambridge University Press, CambridgeGoogle Scholar
  83. Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308CrossRefGoogle Scholar
  84. Green TGA, Lange OL (1995) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schulz ED, Caldwell MM (eds) Ecophysiology of photosynthesis, vol chapter 16. Springer, Berlin, pp 319–341Google Scholar
  85. Green TGA, Kilian E, Lange OL (1991) Pseudocyphellaria dissimilis: a desiccation-sensitive, highly shade-adapted lichen from New Zealand. Oecologa 85:498–503CrossRefGoogle Scholar
  86. Green TGA, Lange OL, Cowan IR (1994) Ecophysiology of lichen photosynthesis: the role of water status and thallus diffusion resistances. Cryptogamic Bot 4:166–178Google Scholar
  87. Green T, Schroeter B, Sancho L (2007) Plant life in Antarctica. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology, 2nd edn. Marcel Dekker, New York, pp 389–433Google Scholar
  88. Hale ME (1983) The biology of lichens, 3rd edn. Edward Arnold, LondonGoogle Scholar
  89. Harold F, Harold R, Money N (1995) What forces drive cell wall expansion? Can J Bot 73:379–383CrossRefGoogle Scholar
  90. Harris GP (1976) Water and plant life: problems and modern approaches. Springer, BerlinGoogle Scholar
  91. Hartard B, Máguas C, Lakatos M (2008) Delta O-18 characteristics of lichens and their effects on evaporative processes of the subjacent soil. Isot Environ Health Stud 44:111–125CrossRefGoogle Scholar
  92. Hartard B, Cuntz M, Máguas C, Lakatos M (2009) Water isotopes in desiccating lichens. Planta 231:179–193PubMedCrossRefGoogle Scholar
  93. Hawksworth DL, Hill DJ (1984) The lichen forming fungi. Blackie, GlasgowGoogle Scholar
  94. Heijmans M, Arp WJ, Chapin FS III (2004a) Controls on moss evaporation in a boreal black spruce forest. Global Biogeochem Cycles 18:GB2004. doi: 10.1029/2003GB002128 CrossRefGoogle Scholar
  95. Heijmans M, Arp WJ, Chapin FS III (2004b) Carbon dioxide and water vapour exchange from understory species in boreal forest. Agric For Meteorol 123:135–147CrossRefGoogle Scholar
  96. Heintzeler I (1939) Das Wachstum der Schimmelpilze in Abhängigkeit von den Hydraturverhältnissen unter verschiedenen Außenbedingungen. Arch Microbiol 10:92–132Google Scholar
  97. Helliker BR, Griffiths H (2007) Toward a plant-based proxy for the isotope ratio of atmospheric water vapor. Glob Change Biol 13:723–733CrossRefGoogle Scholar
  98. Herk CMv, Aptroot A, Dobben HFv (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154CrossRefGoogle Scholar
  99. Hofstede R, Wolf J, Benzing D (1993) Epiphytic biomass and nutrient status of a Colombian upper montane rain forest. Selbyana 14:37–45Google Scholar
  100. Honegger R (1998) The lichen symbiosis – what is so spectacular about it? Lichenologist 30:193–212Google Scholar
  101. Honegger R (2006) Water relations in lichens. In: Gadd G, Watkinson S, Dyer P (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 185–200Google Scholar
  102. Hopkins B (1960) Observations on rainfall interception by a tropical forest in Uganda. East Afr Agric Forest J 25:255–258Google Scholar
  103. Hutley LB, Doiey D, Yates DJ, Boonsaner A (1997) Water balance of an Australian subtropical rainforest at altitude: the ecological and physiological significance of intercepted cloud and fog. Aust J Bot 45:311–329CrossRefGoogle Scholar
  104. Jägerbrand A, Alatalo J, Chrimes D, Molau U (2009) Plant community responses to 5 years of simulated climate change in meadow and heath ecosystems at a subarctic-alpine site. Oecologia 161:601–610PubMedCrossRefGoogle Scholar
  105. Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F (2005) Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol 7:1–12PubMedCrossRefGoogle Scholar
  106. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007. The Fourth Assessment Report of the IPCC. Cambridge, New York: Cambridge University Press. Makers. Intergovernmental Panel on Climate Change, BangkokGoogle Scholar
  107. Kelliher F et al (1998) Evaporation from a central Siberian pine forest. J Hydrol 205:279–296CrossRefGoogle Scholar
  108. Knops JMH, Nash TH III, Schlesinger WH (1996) The influence of epiphytic lichens on the nutrient cycling of an oak woodland. Ecol Monogr 66:159–179CrossRefGoogle Scholar
  109. Köhler L, Tobon C, Frumau KFA, Bruijnzee LA (2007) Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecol 193:171–184CrossRefGoogle Scholar
  110. Köstner BMM et al (1992) Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements. Oecologia 91:350–359CrossRefGoogle Scholar
  111. Kottke I, Agerer R (1983) Untersuchungen zur Bedeutung der Mykorrhiza in älteren Laub- und Nadelwaldbeständen des Südwestdeutschen Keuperberglandes. Mitteilungen des Vereins für Forstkundliche Standortskunde und Forstpflanzenzüchtung 30:30–39Google Scholar
  112. Kranner I et al (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146PubMedCrossRefGoogle Scholar
  113. Kranner I, Beckett R, Hochman A, Nash TH (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593CrossRefGoogle Scholar
  114. Lafleur PM, Rouse WR (1988) The influence of surface cover and climate on energy partitioning and evaporation in a Subarctic wetland. Bound-Lay Meteorol 44:327–348CrossRefGoogle Scholar
  115. Lakatos M, Rascher U, Büdel B (2006) Functional characteristics of corticolous lichens in the understory of a tropical lowland rain forest. New Phytol 172:679–695PubMedCrossRefGoogle Scholar
  116. Lakatos M, Hartard B, Máguas C (2007) The stable isotopes δ13C and δ18O of lichens can be used as tracers of microenvironmental carbon and water sources. In: Dawson TE, Siegwolf RTW (eds) Stable isotopes as indicators of ecological change. Elsevier, Oxford, pp 73–88Google Scholar
  117. Lakatos M, Hartard B, Máguas C (2009) Ökologie und Physiologie Borken bewohnender Flechten. In: Bayerische Akademie der Wissenschaften (ed) Rundgespräche der Kommission für Ökologie: Ökologische Rolle der Flechten, vol 36. Pfeil, Munich, pp 129–141Google Scholar
  118. Lange OL (1969) CO2-Gaswechsel von Moosen nach Wasserdampfaufnahme aus dem Luftraum. Planta 89:90–94CrossRefGoogle Scholar
  119. Lange OL, Bertsch A (1965) Photosynthese der Wüstenflechte Ramalina maciformis nach Wasserdampfaufnahme aus dem Luftraum. Naturwissenschaften 52:215–216CrossRefGoogle Scholar
  120. Lange OL, Kappen L (1972) Photosynthesis of Lichens from Antarctica. Antarct Res Ser 20:83–95Google Scholar
  121. Lange OL, Kilian E (1985) Reaktivierung der Photosynthese trockener Flechten durch Wasserdampfaufnahme aus dem Luftraum: Artspezifisch unterschiedliches Verhalten. Flora 176:7–23Google Scholar
  122. Lange OL, Tenhunen JD (1981) Moisture content and CO2 exchange of lichens. II. Depression of net photosynthesis in Ramalina maciformis at high water content is caused by increased thallus carbon dioxide diffusion resistance. Oecologia 51:426–429CrossRefGoogle Scholar
  123. Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110CrossRefGoogle Scholar
  124. Lange OL, Bilger W, Rimke S, Schreiber U (1989) Chlorophyll fluorescence of lichens containing green and blue green algae during hydration by water vapor uptake and by addition of liquid water. Bot Acta 102:306–313Google Scholar
  125. Lange OL, Meyer A, Zellner H, Ulmann I, Wessels DCJ (1990) Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone of the Namib Desert. Madoqua 17:17–30Google Scholar
  126. Lange OL, Büdel B, Heber U, Meyer A, Zellner H, Green TGA (1993a) Temperate rainforest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO2 exchange. Oecologia 95:303–313CrossRefGoogle Scholar
  127. Lange OL, Büdel B, Meyer A, Kilian E (1993b) Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 25:175–189Google Scholar
  128. Lange OL, Büdel B, Zellner H, Zotz G, Meyer A (1994) Field measurements of water relations and CO2 exchange of the tropical, cyanobacterial basidiolichen Dictyonema glabratum in a panamanian rainforest. Bot Acta 107:279–290Google Scholar
  129. Lange OL, Green TGA, Heber U (2001) Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? J Exp Bot 52:2033–2042PubMedCrossRefGoogle Scholar
  130. Lange OL, Allan Green TG, Meyer A, Zellner H (2007) Water relations and carbon dioxide exchange of epiphytic lichens in the Namib fog desert. Flora 202:479–487Google Scholar
  131. Larson D (1981) Differential wetting in some lichens and mosses: the role of morphology. Bryologist 84:1–15CrossRefGoogle Scholar
  132. Larson DW (1987) The absorption and release of water by lichens. Bibl Lichenol 25:351–360Google Scholar
  133. Laurance W, Powell G, Hansen L (2002) A precarious future for Amazonia. Trends Ecol Evol 17:251–252CrossRefGoogle Scholar
  134. Lawton RO, Nair US, Pielke RA Sr, Welch RM (2001) Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584–587PubMedGoogle Scholar
  135. Lechowicz MJ (1982) Ecological trends in lichen photosynthesis. Oecologia 53:330–336CrossRefGoogle Scholar
  136. Leon-Vargas Y, Engwald S, Proctor MCF (2006) Microclimate, light adaptation and desiccation tolerance of epiphytic bryophytes in two Venezuelan cloud forests. J Biogeogr 33:901–913CrossRefGoogle Scholar
  137. Lewis D, Smith D (1967) Sugar alcohols (polyols) in fungi and green plants. I. Distribution, physiology and metabolism. New Phytol 66:143–184CrossRefGoogle Scholar
  138. Longton R (1992) The role of bryophytes and lichens in terrestrial ecosystems. In: Bates J, Farmer A (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 32–76Google Scholar
  139. Lugo A, Brinson M, Brown S (1990) Forested wetlands. Elsevier, New York, NYGoogle Scholar
  140. Mägdefrau K (1982) Life-forms of bryophytes. In: Smith AJ (ed) Bryophyte ecology. Chapman and Hall, London, pp 45–58Google Scholar
  141. Matthes-Sears U, Nash TH III (1986) The ecology of Ramalina menziesii V. Estimation of gross carbon gain and thallus hydration source from diurnal measurements and climatic data. Can J Bot 64:1698–1702CrossRefGoogle Scholar
  142. Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem Cycles 1(1):61–86CrossRefGoogle Scholar
  143. Mayaba N, Beckett R (2001) The effect of desiccation on the activities of antioxidant enzymes in lichens from habitats of contrasting water status. Symbiosis 31:113–121Google Scholar
  144. Montfoort D, Ek R (1990) Vertical distribution and ecology of epiphytic bryophytes and lichens in a lowland rain forest in French Guyana. In: vol. MSc. Utrecht, Holland, Utrecht, p 61Google Scholar
  145. Nadkarni NM, Solano R (2002) Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia 131:580–586CrossRefGoogle Scholar
  146. Nash TH III (2008) Lichen biology, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  147. Nash TH III, Reiner A, Demmig-Adams B, Kilian E, Kaiser WM, Lange OL (1990) The effect of atmospheric desiccation and osmotic water stress on photosynthesis and dark respiration of lichens. New Phytol 116:269–276CrossRefGoogle Scholar
  148. Normann F et al (2010) Diversity and vertical distribution of epiphytic macrolichens in lowland rain forest and lowland cloud forest of French Guiana. Ecol Indic 10:1111–1118CrossRefGoogle Scholar
  149. O’Connell KEB, Gower ST, Norman JM (2003a) Comparison of net primary production and light-use dynamics of two boreal black spruce forest communities. Ecosystems 6:236–247CrossRefGoogle Scholar
  150. O’Connell KEB, Gower ST, Norman JM (2003b) Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems 6:248–260CrossRefGoogle Scholar
  151. O’Neill K (2000) Role of bryophyte-dominated ecosystems in the global carbon budget. In: Shaw AJ, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 344–368Google Scholar
  152. Oechel WC, Vourlitis GL, Hastings SJ Jr, RPA BP (1998) The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems. Glob Change Biol 4:77–90CrossRefGoogle Scholar
  153. Oliver MJ (1991) Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis: ramifications for a repair-based mechanism of desiccation tolerance. Plant Physiol 97:1501–1511PubMedCrossRefGoogle Scholar
  154. Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100CrossRefGoogle Scholar
  155. Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799PubMedCrossRefGoogle Scholar
  156. Oren R, Phillips N, Katul G, Ewers B, Pataki D (1998) Scaling xylem sap flux and soil water balance and calculating variance: a method for partitioning water flux in forests. Ann For Sci 55:191–216CrossRefGoogle Scholar
  157. Palmqvist K (2000) Carbon economy in lichens [review]. New Phytol 148:11–36CrossRefGoogle Scholar
  158. Pardow A, Hartard B, Lakatos M (2010) Morphological, photosynthetic and water relations traits underpin the contrasting success of two tropical lichen groups at the interior and edge of forest fragments. Ann Bot Plants plq004:10Google Scholar
  159. Patterson P (1946) Osmotic values of bryophytes and problems presented by refractory types. Am J Bot 33:604–611CrossRefGoogle Scholar
  160. Perry DR (1984) The canopy of the tropical rain-forest. Sci Am 251:138–147CrossRefGoogle Scholar
  161. Pettersson R, Ball J, Renhorn K, Esseen P, Sjöberg K (1995) Invertebrate communities in boreal forest canopies as influenced by forestry and lichens with implications for passerine birds. Biol Conserv 74:57–63CrossRefGoogle Scholar
  162. Pharo EJ, Zartman CE (2007) Bryophytes in a changing landscape: the hierarchical effects of habitat fragmentation on ecological and evolutionary processes: the conservation ecology of cryptogams. Biological Conservation 135:315–325Google Scholar
  163. Pocs T (1980) The epiphytic biomass and its effect on the water-balance of 2 rain-forest types in the Uluguru Mountains (Tanzania, East-Africa). Acta Botanica Academiae Scientiarum Hungaricae 26:143–167Google Scholar
  164. Pocs T (1982) Tropical forest bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapmann & Hall, London, pp 59–104Google Scholar
  165. Price AG, Dunham K, Carleton T, Band L (1997) Variability of water fluxes through the black spruce (Picea mariana) canopy and feather moss (Pleurozium schreberi) carpet in the boreal forest of Northern Manitoba. J Hydrol (Amsterdam) 196:310–323CrossRefGoogle Scholar
  166. Proctor MCF, Tuba Z (2002) Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol 156:327–349CrossRefGoogle Scholar
  167. Proctor MC, Nagy Z, Csintalan Z, Takacs Z (1998) Water-content components in bryophytes: analysis of pressure-volume relationships. J Exp Bot 49:1845–1854CrossRefGoogle Scholar
  168. Proctor MCF et al (2007) Desiccation-tolerance in bryophytes: a review. Bryologist 110:595–621CrossRefGoogle Scholar
  169. Pypker TG, Unsworth MH, Bond BJ (2006) The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Canadian J Forest Research-Revue Canadienne De Recherche Forestiere 36:819–832CrossRefGoogle Scholar
  170. Rai A (1988) Nitrogen metabolism. In: Galun M (ed) Handbook of lichenology, vol 1. CRC, Boca Raton, FL, pp 201–237Google Scholar
  171. Richards PW (1984) The ecology of tropical forest bryophytes. In: Schuster RM (ed) New manual of bryology. The Hattori Botanical Laboratory, Nichinan, pp 1233–1270Google Scholar
  172. Richardson B, Rogers C, Richardson M (2000) Nutrients, diversity, and community structure of two phytotelm systems in a lower montane forest, Puerto Rico. Ecol Entomol 25:348–356CrossRefGoogle Scholar
  173. Rieley J, Richards P, Bebbington A (1979) The ecological role of bryophytes in a North Wales woodland. J Ecol 67:497–527CrossRefGoogle Scholar
  174. Rixen C, Mulder C (2005) Improved water retention links high species richness with increased productivity in arctic tundra moss communities. Oecologia 146:287–299Google Scholar
  175. Robinson CH, Wookey PA, Lee JA, Callaghan TV Press MC (1998) Plant community responses to simulated environmental change at a high arctic polar semi-desert. Ecology 79:856–866Google Scholar
  176. Rundel PW (1988) Water relation. In: Galum M (ed) Handbook of lichenology II, vol VII.B.1, pp 17–36Google Scholar
  177. Sala OE et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedCrossRefGoogle Scholar
  178. Scheidegger C, Schroeter B, Frey B (1995) Structural and functional processes during water vapour uptake and desiccation in selected lichens with green algal photobionts. Planta 197:399–409CrossRefGoogle Scholar
  179. Sedia E, Ehrenfeld J (2005) Differential effects of lichens, mosses and grasses on respiration and nitrogen mineralization in soils of the New Jersey Pinelands. Oecologia 144:137–147PubMedCrossRefGoogle Scholar
  180. Sedia E, Ehrenfeld J (2006) Differential effects of lichens and mosses on soil enzyme activity and litter decomposition. Biol Fertil Soils 43:177–189CrossRefGoogle Scholar
  181. Shimoyama K, Hiyama T, Fukushima Y, Inoue G (2004) Controls on evapotranspiration in a west Siberian bog. J Geophys Res Atmos 109:D08111CrossRefGoogle Scholar
  182. Sipman HJM (1989) Lichen zonation in the parque Los Nevados transect. Cramer, Berlin-StuttgartGoogle Scholar
  183. Sipman HJM, Tan BC (1990) A field impression of the lichen and bryophyte zonation on Mount Kinabalu. Flora Malesiana Bulletin 10:241–244Google Scholar
  184. Smith LC et al (2004) Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science 303:353–356PubMedCrossRefGoogle Scholar
  185. Solomon S et al (2007) Climate change 2007: the physical science basis; Contribution of Working Group I to the fourth Assessment Report of the Intergovenmental Panel on Climate ChangeGoogle Scholar
  186. Still C, Foster P, Schneider S (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610CrossRefGoogle Scholar
  187. Stofer S et al (2006) Species richness of lichen functional groups in relation to land use intensity. Lichenologist 38:331–353CrossRefGoogle Scholar
  188. Stone R (2008) ECOSYSTEMS: have desert researchers discovered a hidden loop in the carbon cycle? Science 320:1409PubMedCrossRefGoogle Scholar
  189. Stuntz S, Simon U, Zotz G (2002) Rainforest air-conditioning: the moderating influence of epiphytes on the microclimate in tropical tree crowns. Int J Biometeorol 46:53–59PubMedCrossRefGoogle Scholar
  190. Swanson R, Flanagan L (2001) Environmental regulation of carbon dioxide exchange at the forest floor in a boreal black spruce ecosystem. Agric For Meteorol 108:165–181CrossRefGoogle Scholar
  191. Tarnawski MG, Green TGA, Büdel B, Meyer A, Zellner H, Lange OL (1994) Diel changes of atmospheric co2 concentration within, and above, cryptogam stands in a new zealand temperate rainforest. NZ J Bot 32:329–336Google Scholar
  192. Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Nino frequency in a climate model forced by future greenhouse warming. Nature 398:694–697CrossRefGoogle Scholar
  193. Tunnacliffe A, Wise M (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812PubMedCrossRefGoogle Scholar
  194. Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409CrossRefGoogle Scholar
  195. Uchida M, Nakatsubo T, Kanda H, Koizumi H (2006) Estimation of the annual primary production of the lichen Cetrariella delisei in a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard. Polar Res 25:39–49CrossRefGoogle Scholar
  196. Unal D, Senkardesler A, Sukatar A (2008) Abscisic acid and polyamine contents in the lichens Pseudevernia furfuracea and Ramalina farinacea. Russ J Plant Physiol 55:115–118CrossRefGoogle Scholar
  197. Unsworth MH et al (2004) Components and controls of water flux in an old-growth douglas-fir-western hemlock ecosystem. Ecosystems 7:468–481CrossRefGoogle Scholar
  198. van der Wal R (2006) Do herbivores cause habitat degradation or vegetation state transition? Evidence from the tundra. Oikos 114:177CrossRefGoogle Scholar
  199. Veneklaas EJ, Zagt RJ, Leerdam A, Ek R, Broekhoven AJ, Genderen M (1990) Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Plant Ecol 89:183–192CrossRefGoogle Scholar
  200. Verhoeven J, Toth E (1995) Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates. Soil Biol Biochem 27:271–275CrossRefGoogle Scholar
  201. Vitt D (2000) Peatlands: ecosystems dominated by bryophytes. In: Shaw A, Goffinet B (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 312–343Google Scholar
  202. Vitt D, Halsey L, Campbell C, Bayley S, Thormann M (2001) Spatial patterning of net primary production in wetlands of continental western Canada. Ecoscience 8:499–505Google Scholar
  203. Walker MD et al (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346PubMedCrossRefGoogle Scholar
  204. Wang XQ et al (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149:1739–1750PubMedCrossRefGoogle Scholar
  205. Wasley J, Robinson SA, Lovelock CE, Popp M (2006) Climate change manipulations show antarctic flora is more strongly affected by elevated nutrients than water. Global Change Biology 12:1800–1812Google Scholar
  206. Weissman L, Garty J, Hochman A (2005a) Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration. Appl Environ Microbiol 71:6508–6514PubMedCrossRefGoogle Scholar
  207. Weissman L, Garty J, Hochman A (2005b) Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Appl Environ Microbiol 71:2121–2129PubMedCrossRefGoogle Scholar
  208. Wijk MTv et al (2004) Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Glob Change Biol 10:105–123CrossRefGoogle Scholar
  209. Williams TG, Flanagan LB (1996) Effect of changes in water content on photosynthesis, transpiration and discrimination against (CO2)-13C and (COO)-18O-16O in Pleurozium and Sphagnum. Oecologia 108:38–46CrossRefGoogle Scholar
  210. Wilske B et al (2009) Modeling the variability in annual carbon fluxes related to biological soil crusts in a Mediterranean shrubland. Biogeosci Discuss 6:7295–7324CrossRefGoogle Scholar
  211. Wohlfahrt G, Fenstermaker LF, Arnone JA III (2008) Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Glob Change Biol 14:1475–1487CrossRefGoogle Scholar
  212. Wolf JHD (1993) Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann Mo Bot Gard 80:928–960CrossRefGoogle Scholar
  213. Wolf JHD (1995) Non-vascular epiphyte diversity patterns in the canopy of an upper montane rain forest (2550–3670 m), central Cordillera, Colombia. Selbyana 16:185–195Google Scholar
  214. Wood AJ (2007) The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. Bryologist 110:163–177CrossRefGoogle Scholar
  215. Wood A, Oliver M (2004) Molecular biology and genomics of the desiccation-tolerant moss Tortula ruralis. In: Wood A, Oliver M (eds) New frontiers in bryology: physiology, molecular biology and functional genomics. Kluwer Academic Publisher, Dodrecht, pp 71–90Google Scholar
  216. Worden J, Noone D, Bowman K (2007) Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445:528–532PubMedCrossRefGoogle Scholar
  217. Zeuch L (1934) Untersuchungen zum Wasserhaushalt von Pleurococcus vulgaris. Planta 22:614–643CrossRefGoogle Scholar
  218. Zimmermann R et al (2000) Canopy transpiration in a chronosequence of Central Siberian pine forests. Glob Change Biol 6:25–37CrossRefGoogle Scholar
  219. Zotz G, Bader MY (2009) Epiphytic plants in a changing world-global: change effects on vascular and non-vascular epiphytes. Progress in Botany 70:147–170Google Scholar
  220. Zotz G, Winter K (1994) Photosynthesis and carbon gain of the lichen, Leptogium azureum, in a lowland tropical forest. Flora 189:179–186Google Scholar
  221. Zotz G, Büdel B, Meyer A, Zellner H, Lange OL (1997) Water relations and CO2 exchange of tropical bryophytes in a lower montane rain forest in Panama. Bot Acta 110:9–17Google Scholar
  222. Zotz G, Büdel B, Meyer A, Zellner H, Lange OL (1998) In situ studies of water relations and CO2 exchange of the tropical macrolichen, Sticta tomentosa. New Phytol 139:525–535CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Experimental Ecology, Department of BiologyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations