Skip to main content

Eukaryotic Algae

  • Chapter
  • First Online:
Plant Desiccation Tolerance

Part of the book series: Ecological Studies ((ECOLSTUD,volume 215))

Abstract

Life on the land surface of the earth is impossible without the presence of water. Even simply organized, early prokaryotic organisms need to keep their cytoplasm hydrated for metabolic activity. The ability of early photosynthetic organisms to survive desiccation was one of the most important achievements for terrestrial life outside water. Desiccation tolerance must have evolved at least two times independently, first, in the prokaryotic algae (=cyanobacteria, Chap. 2) and, second, in the newly evolved eukaryotic algal lineages originating from either primary (green and red algae) or secondary endosymbiosis (brown algae). Desiccation-tolerant algae are found among the three major groups of the green land plants (Chlorobionta), the Chlorophyta, the Prasionophyta, and the Charophyta. Other desiccation-tolerant algae are found in the red algae (Rhodophyta) and the polyphyletic group of algae with heterokont flagellae, including the brown algae (Phaeophyceae).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    Article  PubMed  Google Scholar 

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584

    Article  PubMed  Google Scholar 

  • Andersen GL, Frisch AS, Kellogg CA, Levetin E, Lighthart B, Paterno D (2009) Aeromicrobiology/air quality. In: Schaechter M (ed) Encyclopedia of microbiology. Academic, Oxford, pp 11–26

    Chapter  Google Scholar 

  • Büdel B (2001a) Biological soil crusts in European temperate and Mediterranean regions. In: Belnap J, Lange OL (eds) Ecological studies, vol 150. Springer, Heidelberg, pp 75–87

    Google Scholar 

  • Büdel B (2001b) Synopsis: comparative biogeography of soil-crust biota. In: Belnap J, Lange OL (eds) Ecological studies, vol 150. Springer-Verlag, Berlin, pp 141–152

    Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    Article  PubMed  Google Scholar 

  • Cardon ZG, Gray DW, Lewis LA (2008) The green algal underground: evolutionary secrets of desert cells. Bioscience 58:114–122

    Article  Google Scholar 

  • Chapman RL (1976) Ultrastructural investigation on the foliicolous pyrenocarpous lichen Strigula elegans (Fee) Müll. Arg. Phycologia 15:191–196

    Article  Google Scholar 

  • Chapman RL, Good BH (1976) Observations on the morphology and taxonomy of Phycopeltis hawaiiensis King (Chroolepidaceae). Pac Sci 30:187–195

    Google Scholar 

  • Cowan IR, Lange OL, Green TGA (1992) Carbon-dioxide exchange in lichens: determination of transport and carboxylation characteristic. Planta 187:282–294

    Article  CAS  Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103

    Article  PubMed  CAS  Google Scholar 

  • Dromgoole FI (1980) Desiccation resistance of intertidal and subtidal algae. Bot Mar 23:149–159

    Article  Google Scholar 

  • Einav R, Israel A (2007) Seaweeds on the abrasion platforms of the intertidal zone of eastern Mediterranean shores. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, pp 195–207

    Google Scholar 

  • Flechtner VR (2007) North American desert microbiotic soil crust communities. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, pp 539–551

    Google Scholar 

  • Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Nat 58:295–311

    Google Scholar 

  • Flechtner VR, Johansen JR, Belnap J (2008) The biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. West N Am Naturalist 68:405–436

    Article  Google Scholar 

  • Frahm JP (1999) Epiphytische Massenvorkommen der fädigen Grünalge Klebsormidium crenulatum (Kützing) Lokhorst im Rheinland. Decheniana 152:117–119

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Klug MJ, Reddey CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 177–185

    Google Scholar 

  • Friedmann EI, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200

    Article  Google Scholar 

  • Garbary DJ (2007) The margin of the sea: survival at the top of the tides. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, pp 175–191

    Google Scholar 

  • Gärtner G (1994) Zur Taxonomie aerophiler grüner Algenanflüge an Baumrinden. Ber nat -med Verein Innsbruck 81:51–59

    Google Scholar 

  • Gasulla F, Gómez de Nova P, Esteban-Carrasco A, Zapata JM, Barreno E, Guéra A (2009) Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231:195–208

    Article  PubMed  CAS  Google Scholar 

  • Gerrath JF, Gerrath JA, Matthes U, Larson DW (2000) Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Can J Bot 78:807–815

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  • Gray DW, Lewis LA, Cardon ZG (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ 30:1240–1255

    Article  PubMed  CAS  Google Scholar 

  • Griffin D, Kellogg C, Garrsion V, Shinn E (2002) The global transport of dust. Am Sci 90:230–237

    Google Scholar 

  • Gylle AM, Nygård CA, Ekelund NGA (2009) Desiccation and salinity effects on marine and brackish Fucus vesiculosus L. (Phaeophyceae). Phycologia 48:156–164

    Article  CAS  Google Scholar 

  • Hoffmann L (1989) Algae of terrestrial habitats. Bot Rev 55:77–105

    Article  Google Scholar 

  • Holzinger A, Tschaikner A, Remias D (2010) Cytoarchitecture of the desiccation-tolerant green alga Zygogonium ericetorum. Protoplasma 243:15–24

    Article  PubMed  CAS  Google Scholar 

  • Hoppert M, Reimer R, Kemmling A, Schröder A, Günzl B, Heinken T (2004) Structure and reactivity of a biological soil crust from a xeric sandy soil in Central Europe. Geomicrobiol J 21:183–191

    Article  Google Scholar 

  • Hunt LJH, Denny MW (2008) Desiccation protection and disruption: a trade-off for an intertidal marine alga. J Phycol 44:1164–1170

    Article  Google Scholar 

  • Johnson WS, Gigon A, Gulmon SL, Mooney HA (1974) Comparative photosynthetic capacities of intertidal algae under exposed and submerged conditions. Ecology 55:450–453

    Article  Google Scholar 

  • Karsten U, Schumann R, Mostaert AS (2007) Aeroterrestrial algae growing on man-made surfaces: what are the secrets of their ecological success? In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 585–597

    Google Scholar 

  • Knauth LP, Kennedy MJ (2009) The late precambrian greening of the Earth. Nature 460(7256):728–732

    PubMed  CAS  Google Scholar 

  • Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146

    Article  PubMed  CAS  Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    Article  Google Scholar 

  • Langhans TM, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb Ecol 58:394–407

    Article  PubMed  Google Scholar 

  • Larcher W (2001) Physiological plant ecology – ecophysiology and stress physiology of functional groups. Springer-Verlag, Berlin, pp 1–513

    Google Scholar 

  • Lewis LA, Flechtner VR (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon 51:443–451

    Article  Google Scholar 

  • Lüning K (1985) Meeresbotanik. Verbreitung, Ökophsiologie und Nutzung der marinen Makrooalgen. Georg Thieme Verlag, Stuttgart, pp 1–375

    Google Scholar 

  • Lüttge U, Büdel B (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol 12:4371–4444

    Article  Google Scholar 

  • Mikhailyuk TI (2008) Terrestrial lithophilic algae in a granite canyon of the Teteriv River (Ukraine). Biologia 63:824–830

    Article  Google Scholar 

  • Moebus K, Johnson KM, Sieburth JM (1974) Rehydration of desiccated intertidal brown algae: release of dissolved organic carbon and water uptake. Mar Biol 26:127–134

    Article  CAS  Google Scholar 

  • Neustupa J (2003) The genus Phycopeltis (Trentepohliales, Chlorophyta) from tropical Southeast Asia. Nova Hedwig 76:487–505

    Article  Google Scholar 

  • Neustupa J, Škaloud P (2008) Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Biologia 63:806–812

    Article  Google Scholar 

  • Occhipinti-Ambrogi A, Savini D (2003) Biological invasions as a component of global change in stressed marine ecosystems. Mar Pollut Bull 46:542–551

    Article  PubMed  CAS  Google Scholar 

  • Rands DG, Davis JS (1997) Comparative study of activation energies of conductance and desiccation rates of some marine algae. Aquat Sci 59:275–281

    Article  Google Scholar 

  • Rindi F (2007) Diversity, distribution and ecology of green algae and cyanobacteria in urban habitats. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, pp 621–638

    Google Scholar 

  • Rindi F, Guiry MD (2002) Diversity, life history, and ecology of Trentepohlia and Printzia (Trentepohliales, Chlorophyta) in urban habitats in western Ireland. J Phycol 38:39–54

    Article  Google Scholar 

  • Rindi F, López-Bautista JM (2007) New and interesting records of Trentepohlia (Trentepohliales, Chlorophyta) from French Guiana, including the description of two new species. Phycologia 46:698–708

    Article  Google Scholar 

  • Rindi F, Guiry MD, López-Bautista JM (2008) Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. J Phycol 44:1529–1540

    Article  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Rummrich U, Rummrich M, Lange-Bertalot H (1989) Diatomeen als “Fensteralgen” in der Namib-Wüste und anderen ariden Gebieten von SWA/Namibia. Dinteria 20:23–29

    Google Scholar 

  • Sanders WB (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytol 155:425–435

    Article  Google Scholar 

  • Schaffelke B, Deane D (2005) Desiccation tolerance of the introduced marine green alga Codium fragile ssp. tomentosoides – clues for likely transport vectors? Biol Invasions 7:557–565

    Article  Google Scholar 

  • Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, Southern Mojave Desert. Ecology 84:3222–3231

    Article  Google Scholar 

  • Schlichting HE (1969) The importance of airborne algae and protozoa. J Air Pollut Control Assoc 19:946–951

    PubMed  Google Scholar 

  • Sharma NK, Rai AK, Singh S, Brown RM Jr (2007) Airborne algae: their present status and relevance. J Phycol 43:615–627

    Article  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Tschermak-Woess E, Friedmann EI (1984) Hemichloris antarctica, gen. et. sp, nov. (Chlorococcales, Chlorophyta), a cryptoendolithic alga from Antarctica. Phycologia 23:443–445

    Article  PubMed  CAS  Google Scholar 

  • Vogel S (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Schilderung. Beitr Biol Pflanz 31:45–135

    Google Scholar 

  • Wynn-Williams DD (1990) Microbial colonization processes in Antarctic fellfield soil – an experimental overview. Proc NIPR Symp Polar Biol 3:164–178

    Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Zhang B, Zhang Y (2008) Chlorophytes of biological soil crusts in Gurbantunggut Desert, Xinjiang Autonomous Region, China. Front Biol China 3:40–44

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the editors for the invitation to contribute to that highly interesting volume of Ecological Studies. Parts of this work have been supported by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Büdel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Büdel, B. (2011). Eukaryotic Algae. In: Lüttge, U., Beck, E., Bartels, D. (eds) Plant Desiccation Tolerance. Ecological Studies, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19106-0_4

Download citation

Publish with us

Policies and ethics