Advertisement

Eukaryotic Algae

  • Burkhard BüdelEmail author
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 215)

Abstract

Life on the land surface of the earth is impossible without the presence of water. Even simply organized, early prokaryotic organisms need to keep their cytoplasm hydrated for metabolic activity. The ability of early photosynthetic organisms to survive desiccation was one of the most important achievements for terrestrial life outside water. Desiccation tolerance must have evolved at least two times independently, first, in the prokaryotic algae (=cyanobacteria, Chap. 2) and, second, in the newly evolved eukaryotic algal lineages originating from either primary (green and red algae) or secondary endosymbiosis (brown algae). Desiccation-tolerant algae are found among the three major groups of the green land plants (Chlorobionta), the Chlorophyta, the Prasionophyta, and the Charophyta. Other desiccation-tolerant algae are found in the red algae (Rhodophyta) and the polyphyletic group of algae with heterokont flagellae, including the brown algae (Phaeophyceae).

Keywords

Green Alga Brown Alga Desiccation Tolerance Biological Soil Crust Eukaryotic Alga 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to thank the editors for the invitation to contribute to that highly interesting volume of Ecological Studies. Parts of this work have been supported by the German Research Foundation (DFG).

References

  1. Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695PubMedCrossRefGoogle Scholar
  2. Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584PubMedCrossRefGoogle Scholar
  3. Andersen GL, Frisch AS, Kellogg CA, Levetin E, Lighthart B, Paterno D (2009) Aeromicrobiology/air quality. In: Schaechter M (ed) Encyclopedia of microbiology. Academic, Oxford, pp 11–26CrossRefGoogle Scholar
  4. Büdel B (2001a) Biological soil crusts in European temperate and Mediterranean regions. In: Belnap J, Lange OL (eds) Ecological studies, vol 150. Springer, Heidelberg, pp 75–87Google Scholar
  5. Büdel B (2001b) Synopsis: comparative biogeography of soil-crust biota. In: Belnap J, Lange OL (eds) Ecological studies, vol 150. Springer-Verlag, Berlin, pp 141–152Google Scholar
  6. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247PubMedCrossRefGoogle Scholar
  7. Cardon ZG, Gray DW, Lewis LA (2008) The green algal underground: evolutionary secrets of desert cells. Bioscience 58:114–122CrossRefGoogle Scholar
  8. Chapman RL (1976) Ultrastructural investigation on the foliicolous pyrenocarpous lichen Strigula elegans (Fee) Müll. Arg. Phycologia 15:191–196CrossRefGoogle Scholar
  9. Chapman RL, Good BH (1976) Observations on the morphology and taxonomy of Phycopeltis hawaiiensis King (Chroolepidaceae). Pac Sci 30:187–195Google Scholar
  10. Cowan IR, Lange OL, Green TGA (1992) Carbon-dioxide exchange in lichens: determination of transport and carboxylation characteristic. Planta 187:282–294CrossRefGoogle Scholar
  11. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103PubMedCrossRefGoogle Scholar
  12. Dromgoole FI (1980) Desiccation resistance of intertidal and subtidal algae. Bot Mar 23:149–159CrossRefGoogle Scholar
  13. Einav R, Israel A (2007) Seaweeds on the abrasion platforms of the intertidal zone of eastern Mediterranean shores. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, pp 195–207Google Scholar
  14. Flechtner VR (2007) North American desert microbiotic soil crust communities. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, pp 539–551Google Scholar
  15. Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Nat 58:295–311Google Scholar
  16. Flechtner VR, Johansen JR, Belnap J (2008) The biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. West N Am Naturalist 68:405–436CrossRefGoogle Scholar
  17. Frahm JP (1999) Epiphytische Massenvorkommen der fädigen Grünalge Klebsormidium crenulatum (Kützing) Lokhorst im Rheinland. Decheniana 152:117–119Google Scholar
  18. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053PubMedCrossRefGoogle Scholar
  19. Friedmann EI, Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Klug MJ, Reddey CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 177–185Google Scholar
  20. Friedmann EI, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200CrossRefGoogle Scholar
  21. Garbary DJ (2007) The margin of the sea: survival at the top of the tides. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, pp 175–191Google Scholar
  22. Gärtner G (1994) Zur Taxonomie aerophiler grüner Algenanflüge an Baumrinden. Ber nat -med Verein Innsbruck 81:51–59Google Scholar
  23. Gasulla F, Gómez de Nova P, Esteban-Carrasco A, Zapata JM, Barreno E, Guéra A (2009) Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231:195–208PubMedCrossRefGoogle Scholar
  24. Gerrath JF, Gerrath JA, Matthes U, Larson DW (2000) Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Can J Bot 78:807–815Google Scholar
  25. Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478Google Scholar
  26. Gray DW, Lewis LA, Cardon ZG (2007) Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives. Plant Cell Environ 30:1240–1255PubMedCrossRefGoogle Scholar
  27. Griffin D, Kellogg C, Garrsion V, Shinn E (2002) The global transport of dust. Am Sci 90:230–237Google Scholar
  28. Gylle AM, Nygård CA, Ekelund NGA (2009) Desiccation and salinity effects on marine and brackish Fucus vesiculosus L. (Phaeophyceae). Phycologia 48:156–164CrossRefGoogle Scholar
  29. Hoffmann L (1989) Algae of terrestrial habitats. Bot Rev 55:77–105CrossRefGoogle Scholar
  30. Holzinger A, Tschaikner A, Remias D (2010) Cytoarchitecture of the desiccation-tolerant green alga Zygogonium ericetorum. Protoplasma 243:15–24PubMedCrossRefGoogle Scholar
  31. Hoppert M, Reimer R, Kemmling A, Schröder A, Günzl B, Heinken T (2004) Structure and reactivity of a biological soil crust from a xeric sandy soil in Central Europe. Geomicrobiol J 21:183–191CrossRefGoogle Scholar
  32. Hunt LJH, Denny MW (2008) Desiccation protection and disruption: a trade-off for an intertidal marine alga. J Phycol 44:1164–1170CrossRefGoogle Scholar
  33. Johnson WS, Gigon A, Gulmon SL, Mooney HA (1974) Comparative photosynthetic capacities of intertidal algae under exposed and submerged conditions. Ecology 55:450–453CrossRefGoogle Scholar
  34. Karsten U, Schumann R, Mostaert AS (2007) Aeroterrestrial algae growing on man-made surfaces: what are the secrets of their ecological success? In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 585–597Google Scholar
  35. Knauth LP, Kennedy MJ (2009) The late precambrian greening of the Earth. Nature 460(7256):728–732PubMedGoogle Scholar
  36. Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146PubMedCrossRefGoogle Scholar
  37. Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110CrossRefGoogle Scholar
  38. Langhans TM, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb Ecol 58:394–407PubMedCrossRefGoogle Scholar
  39. Larcher W (2001) Physiological plant ecology – ecophysiology and stress physiology of functional groups. Springer-Verlag, Berlin, pp 1–513Google Scholar
  40. Lewis LA, Flechtner VR (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon 51:443–451CrossRefGoogle Scholar
  41. Lüning K (1985) Meeresbotanik. Verbreitung, Ökophsiologie und Nutzung der marinen Makrooalgen. Georg Thieme Verlag, Stuttgart, pp 1–375Google Scholar
  42. Lüttge U, Büdel B (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol 12:4371–4444CrossRefGoogle Scholar
  43. Mikhailyuk TI (2008) Terrestrial lithophilic algae in a granite canyon of the Teteriv River (Ukraine). Biologia 63:824–830CrossRefGoogle Scholar
  44. Moebus K, Johnson KM, Sieburth JM (1974) Rehydration of desiccated intertidal brown algae: release of dissolved organic carbon and water uptake. Mar Biol 26:127–134CrossRefGoogle Scholar
  45. Neustupa J (2003) The genus Phycopeltis (Trentepohliales, Chlorophyta) from tropical Southeast Asia. Nova Hedwig 76:487–505CrossRefGoogle Scholar
  46. Neustupa J, Škaloud P (2008) Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Biologia 63:806–812CrossRefGoogle Scholar
  47. Occhipinti-Ambrogi A, Savini D (2003) Biological invasions as a component of global change in stressed marine ecosystems. Mar Pollut Bull 46:542–551PubMedCrossRefGoogle Scholar
  48. Rands DG, Davis JS (1997) Comparative study of activation energies of conductance and desiccation rates of some marine algae. Aquat Sci 59:275–281CrossRefGoogle Scholar
  49. Rindi F (2007) Diversity, distribution and ecology of green algae and cyanobacteria in urban habitats. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, pp 621–638Google Scholar
  50. Rindi F, Guiry MD (2002) Diversity, life history, and ecology of Trentepohlia and Printzia (Trentepohliales, Chlorophyta) in urban habitats in western Ireland. J Phycol 38:39–54CrossRefGoogle Scholar
  51. Rindi F, López-Bautista JM (2007) New and interesting records of Trentepohlia (Trentepohliales, Chlorophyta) from French Guiana, including the description of two new species. Phycologia 46:698–708CrossRefGoogle Scholar
  52. Rindi F, Guiry MD, López-Bautista JM (2008) Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. J Phycol 44:1529–1540CrossRefGoogle Scholar
  53. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedCrossRefGoogle Scholar
  54. Rummrich U, Rummrich M, Lange-Bertalot H (1989) Diatomeen als “Fensteralgen” in der Namib-Wüste und anderen ariden Gebieten von SWA/Namibia. Dinteria 20:23–29Google Scholar
  55. Sanders WB (2002) Reproductive strategies, relichenization and thallus development observed in situ in leaf-dwelling lichen communities. New Phytol 155:425–435CrossRefGoogle Scholar
  56. Schaffelke B, Deane D (2005) Desiccation tolerance of the introduced marine green alga Codium fragile ssp. tomentosoides – clues for likely transport vectors? Biol Invasions 7:557–565CrossRefGoogle Scholar
  57. Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, Southern Mojave Desert. Ecology 84:3222–3231CrossRefGoogle Scholar
  58. Schlichting HE (1969) The importance of airborne algae and protozoa. J Air Pollut Control Assoc 19:946–951PubMedGoogle Scholar
  59. Sharma NK, Rai AK, Singh S, Brown RM Jr (2007) Airborne algae: their present status and relevance. J Phycol 43:615–627CrossRefGoogle Scholar
  60. Smirnoff N (1993) The role of active oxygen in the response of plants water deficit and desiccation. New Phytol 125:27–58CrossRefGoogle Scholar
  61. Tschermak-Woess E, Friedmann EI (1984) Hemichloris antarctica, gen. et. sp, nov. (Chlorococcales, Chlorophyta), a cryptoendolithic alga from Antarctica. Phycologia 23:443–445PubMedCrossRefGoogle Scholar
  62. Vogel S (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Schilderung. Beitr Biol Pflanz 31:45–135Google Scholar
  63. Wynn-Williams DD (1990) Microbial colonization processes in Antarctic fellfield soil – an experimental overview. Proc NIPR Symp Polar Biol 3:164–178Google Scholar
  64. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222PubMedCrossRefGoogle Scholar
  65. Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020PubMedCrossRefGoogle Scholar
  66. Zhao J, Zhang B, Zhang Y (2008) Chlorophytes of biological soil crusts in Gurbantunggut Desert, Xinjiang Autonomous Region, China. Front Biol China 3:40–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Biology, BotanyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations