Cyanobacteria: Habitats and Species

  • Burkhard BüdelEmail author
Part of the Ecological Studies book series (ECOLSTUD, volume 215)


Cyanobacteria were most probably the first group of organisms performing an oxygen releasing photosynthesis. Their possible fossil origin (“look-alikes”) from Apex chert of north-western West Australia dates back to about 3.46 billion years (Schopf 2000). However, the oldest unambiguous fossil cyanobacteria were found in tidal-flat sedimentary rocks and are about 2 billion years old (Hofmann 1976). With the onset of oxygenic photosynthesis between 2.45 and 2.32 billion years ago (Rasmussen et al. 2008), the ancient Earth’s oxygen-free atmosphere experienced a deep impact with the sharp rise of oxygen. Before the evolution of respiration, the oxygen was highly toxic to life, and as a consequence, the first global catastrophe for most of the organisms living on earth to that date followed. Today, cyanobacteria are found in almost all habitats and biomes present on earth (Whitton and Potts 2000). However, to successfully colonize terrestrial habitats does also mean to be able to resist extreme desiccation. Air-drying does severely harm membrane structure, proteins, and nucleic acids and is lethal to the majority of organisms on Earth (Billi and Potts 2002). During their long evolutionary history, cyanobacteria developed the ability of their cells to undergo nearly absolute dehydration during air-drying without being killed, a phenomenon known as anhydrobiosis. This is also referred to as “desiccation tolerance” and is one mechanism of drought tolerance (Alpert 2005). Consequently, cyanobacteria colonized more and more of the available terrestrial habitats. Dehydration in air can lead to a removal of all but 0.1 g water/g dry weight (Billi and Potts 2000).


Rock Surface Desiccation Tolerance Terrestrial Habitat Biological Soil Crust Oxygenic Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to express my sincere thanks to U. Lüttge and E. Beck for offering me the opportunity to write this review and for many inspiring discussions. The German Research Foundation (DFG) is thanked for continuous financial support of my work. R. Honegger (Zürich) is thanked for preparation, thin sectioning and electron microscopy of dry Chroococcidiopsis cells.


  1. Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695PubMedCrossRefGoogle Scholar
  2. Belnap J (1993) Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Great Basin Nat 53:89–95Google Scholar
  3. Belnap J, Lange OL (2001) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 1–503CrossRefGoogle Scholar
  4. Billi D (2009) Subcellular integrities in Chroococcidiopsis sp. CCMEE 029 survivors after prolonged desiccation revealed by molecular probes and genome stability assays. Extremophiles 13:49–57PubMedCrossRefGoogle Scholar
  5. Billi D, Potts M (2000) Life without water: responses of prokaryotes to desiccation. In: Storey KB, Storey JM (eds) Environmental stressors and gene responses. Elsevier, Amsterdam, pp 181–192CrossRefGoogle Scholar
  6. Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12PubMedCrossRefGoogle Scholar
  7. Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70:7070–7077PubMedCrossRefGoogle Scholar
  8. Broady PA (1981) The ecology of chasmolithic algae at coastal locations of Antarctica. Phycologia 20:259–272CrossRefGoogle Scholar
  9. Buckley CE, Hougthon JA (1976) A study of the effects of near UV radiation on the pigmentation of the blue-green alga Gloeocapsa alpicola. Arch Microbiol 107:93–97PubMedCrossRefGoogle Scholar
  10. Büdel B (1999) Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol 34:361–370Google Scholar
  11. Büdel B (2011) Chroococcidiopsis. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, HeidelbergGoogle Scholar
  12. Büdel B, Lange OL (1991) Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Bot Acta 104:361–366Google Scholar
  13. Büdel B, Wessels DCJ (1991) Rock inhabiting blue-green algae/cyanobacteria from hot arid regions. Algol Stud 64:385–398Google Scholar
  14. Büdel B, Lüttge U, Stelzer R, Huber O, Medina E (1994) Cyanobacteria of rocks and soils of the Orinoco lowlands and the Guayana uplands, Venezuela. Bot Acta 107:422–431Google Scholar
  15. Büdel B, Becker U, Follmann G, Sterflinger K (2000) Algae, fungi, and lichens on Inselbergs. In: Porembski S, Barthlott W (eds) Inselbergs: biotic diversity of isolated rock outcrops in tropical and temperate regions. Springer, Berlin, pp 68–90Google Scholar
  16. Büdel B, Bendix J, Bicker FR, Green TGA (2008) Dewfall as a water source frequently activates the endoltihic cyanobacteria communities in the granites of Taylor Valley, Antarctica. J Phycol 44:1415–1424CrossRefGoogle Scholar
  17. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern african biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247PubMedCrossRefGoogle Scholar
  18. Diels L (1914) Die Algen-Vegetation der Südtiroler Dolomitriffe. Ein Beitrag zur Ökologie der Lithophyten. Ber Dtsch Bot Ges 32:502–526Google Scholar
  19. Eggert A, Häubner N, Klausch S, Karsten U, Schumann R (2006) Quantification of algal biofilms colonising building material: chlorophyll a measured by PAM-fluorometry as a biomass parameter. Biofouling 22:79–90PubMedCrossRefGoogle Scholar
  20. Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each others’s closest living relatives. Mol Phylogenet Evol 41:498–506Google Scholar
  21. Fleming ED, Castenholz RW (2007) Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ Microbiol 9:1448–1455PubMedCrossRefGoogle Scholar
  22. Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 17:9–18CrossRefGoogle Scholar
  23. Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Orig Life Evol Biosph 10:223–235CrossRefGoogle Scholar
  24. Friedmann EI, Ocampo-Friedmann R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the antarctic desert ecosystem. Science 193:1257–1249Google Scholar
  25. Friedmann EI, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200CrossRefGoogle Scholar
  26. Friedmann EI, Hua MS, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Ber Polarforsch 58:251–259Google Scholar
  27. Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409CrossRefGoogle Scholar
  28. Golubic S (1967) Die Algenvegetation an Sandsteinfelsen Ost-Venezuelas (Cumaná). Int Rev Hydrobiol 52:5–693Google Scholar
  29. Green TGA, Lange OL (1995) Photosynthesis in poikilohydric plants: a comparison of lichens and bryophytes. In: Schultze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 319–341Google Scholar
  30. Grilli Caiola M, Billi D (2007) Chroococcidiopsis from desert to Mars. Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Berlin, pp 555–568Google Scholar
  31. Grilli Caiola M, Ocampo-Friedmann R, Friedmann EI (1993) Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia 32:315–322CrossRefGoogle Scholar
  32. Grilli Caiola M, Billi D, Friedmann EI (1996) Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsis sp. (Chroococcales). Eur J Phycol 31:97–105CrossRefGoogle Scholar
  33. Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Palaeontol 50:1040–1073Google Scholar
  34. Horath T, Bachofen R (2009) Moelcular characterization of an endolithic microbial community in dolomite rock in the Central Alps (Switzerland). Microb Ecol. doi: 10.1007/s00248-008-9483-7: PubMedGoogle Scholar
  35. Jaag O (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beiträge zur Kryptogamenflora der Schweiz 9. Kommissionsverlag Buchdruckerei Büchler & Co., Bern, pp 1–560 + 21 platesGoogle Scholar
  36. Karsten U, Schumann R, Mostaert AS (2007) Aeroterrestrial algae growing on man-made surfaces: what are the secrets of their ecological success? In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 585–597Google Scholar
  37. Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil Chroococcales. Gustav Fischer Verlag, Jena, pp 1–548Google Scholar
  38. Kraus G (1911) Boden und Klima auf kleinstem Raum Versuch einer exakten Behandlung des Standorts auf dem Wellenkalk. Gustav Fischer Verlag, Jena, pp 1–184Google Scholar
  39. Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110CrossRefGoogle Scholar
  40. Lange OL, Meyer A, Büdel B (1994) Net-photosynthesis of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with Microcoelus sociatus isolated from a desert soil crust. Funct Ecol 8:52–57CrossRefGoogle Scholar
  41. Lüttge U (1997) Cyanobacterial Tintenstrich communities and their ecology. Naturwissenschaften 84:526–534CrossRefGoogle Scholar
  42. Neustupa J, Škaloud P (2008) Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Biologia 63:806–812CrossRefGoogle Scholar
  43. Novis PM, Smissen RD (2006) Two genetic and ecological groups of Nostoc commune in Victoria Land, Antarctia, revealed by AFLP analysis. Antarct Sci 18:573–581CrossRefGoogle Scholar
  44. Omelon CR, Pollard WH, Ferris FG (2006) Chemical and ultrastructural characterization of high Arctic cryptoendolithic habitats. Geomicrobiol J 23:189–200CrossRefGoogle Scholar
  45. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104PubMedCrossRefGoogle Scholar
  46. Sarthou C, Thérézien Y, Couté A (1995) Cyanophycées de l’inselberg des Nouragues (Guyane française). Nova Hedwig 61:85–109Google Scholar
  47. Schade A (1917) Über den jährlichen Wärmegenuss von Webera nutans (Schreb.) Hedw. und Leptoscyphus Taylori (Hook.) Mitt. im Elbsandsteingebirge. Ber Deutsch Bot Ges 35:490–505Google Scholar
  48. Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 13–65Google Scholar
  49. Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Birincioglu M, Helm RF, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31:2995–3005PubMedCrossRefGoogle Scholar
  50. Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585CrossRefGoogle Scholar
  51. Tirkey J, Adhikary SP (2005) Cyanobacteria in biological soil crusts of India. Curr Sci 89:515–521Google Scholar
  52. Weber B, Wessels DCJ, Büdel B (1996) Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algol Stud 83:565–579Google Scholar
  53. Wessels DCJ, Büdel B (1995) Epilithic and cryptoendolithic cyanobacteria of Clarens sandstone cliffs in the Golden Gate Highlands National Park, South Africa. Bot Acta 108:220–226Google Scholar
  54. Whitton BA, Potts M (2000) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 1–704Google Scholar
  55. Wright DJ, Smith SC, Jordar V, Scherer S, Jervis J, Warren A, Helm RF, Potts M (2005) UV Irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (Cyanobacteria). J Biol Chem 280:40271–40281PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Biology, BotanyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations