Skip to main content

Resurrection Plants: Physiology and Molecular Biology

  • Chapter
  • First Online:
Book cover Plant Desiccation Tolerance

Part of the book series: Ecological Studies ((ECOLSTUD,volume 215))

Abstract

The ability to survive desiccation is commonly found in seeds or pollen and it is widespread among bryophytes, but it is rarely present in vegetative tissues. A small group of vascular plants also known as resurrection plants exhibit tolerance to nearly complete desiccation of vegetative tissues. To date more than 300 angiosperm species have been identified that possess this kind of desiccation tolerance. The different problems associated with desiccation require specific mechanisms to be in place. Conservation of structure of membranes and macromolecules is correlated with the synthesis of large amounts of desiccation-induced protective proteins such as late embryogenesis abundant (LEA) proteins, sugars, and reactive oxygen scavengers. The desiccation-induced molecules may have different roles in cellular protection: (1) proteins may conserve structures of macromolecules and membranes, (2) the sugars may be effective in osmotic adjustment and they may stabilize membrane structures and proteins, (3) mechanical damage due to vacuole shrinkage in dehydrating cells is probably avoided by cell wall folding or by replacing the water in vacuoles with non-aqueous substances, and (4) oxidative stress, due to enhanced production of reactive oxygen species (ROS) especially by chloroplasts, is minimized through diverse ROS scavenging molecules. Photochemical activities of resurrection plants are inhibited with loss of water similar to those of non-tolerant plants; however, photosynthesis is rapidly reactivated during rehydration even when plants lost more than 95% water. In this chapter, we describe the molecular and biochemical mechanisms associated with desiccation tolerance as well as morphological and physiological adaptations of resurrection plants. Acquisition of desiccation tolerance requires the coordinated expression of diverse genes, which is achieved through a complex regulatory network. Many of the signalling pathways are mediated via the plant hormone abscisic acid (ABA), a key molecule in the process. Possible evolutionary mechanisms selecting for desiccation-tolerant plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

LEA:

Late embryogenesis abundant

ROS:

Reactive oxygen species

References

  • Aalen RB, Opsahl-Ferstad HG, Linnestad C, Olsen OA (1994) Transcripts encoding an oleosin and a dormancy-related protein are present in both the aleurone layer and the embryo of developing barley (Hordeum vulgare L.) seeds. Plant J 5:385–396

    Article  PubMed  CAS  Google Scholar 

  • Abe S, Kurashima A, Yokohama Y, Tanaka J (2001) The cellular ability of desiccation tolerance in Japanese intertidal seaweeds. Bot Mar 44:125–131

    Article  Google Scholar 

  • Adamska I (1997) ELIPs. Light-induced stress proteins. Physiol Plant 100:794–805

    Article  CAS  Google Scholar 

  • Alamillo JM, Bartels D (1996) Light and stage of development influence the expression of desiccation-induced genes in the resurrection plant Craterostigma plantagineum. Plant Cell Environ 19:300–310

    Article  CAS  Google Scholar 

  • Alamillo JM, Bartels D (2001) Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complexes in the resurrection plant Craterostigma plantagineum. Plant Sci 160:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Alamillo J, Roncarati R, Heino P, Velasco R, Nelson D, Elster R, Brenacchia G, Furini A, Schwall G, Salamini F, Bartels D (1995) Molecular analysis of desiccation tolerance in barley embryos and in the resurrection plant Craterostigma plantagineum. Agronomie 2:161–167

    Google Scholar 

  • Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17

    Article  Google Scholar 

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small and rare. J Exp Biol 209:1575–1584

    Article  PubMed  Google Scholar 

  • Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15(4):211–218

    Article  PubMed  CAS  Google Scholar 

  • Bartels D (2005) Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol 45:696–701

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Singh M, Salamini F (1988) Onset of desiccation tolerance during development of the barley embryo. Planta 175:485–492

    Article  CAS  Google Scholar 

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34

    Article  CAS  Google Scholar 

  • Bartels D, Hanke C, Schneider K, Michel D, Salamini F (1992) A desiccation-related ELIP-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J 11:2771–2778

    PubMed  CAS  Google Scholar 

  • Bartels D, Ditzer A, Furini A (2006) What can we learn from resurrection plants? In: Ribaut JM (ed) Drought adaptation in cereals. New York, Hayworth, pp 599–622

    Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Bernacchia G, Salamini F, Bartels D (1996) Molecular characterization of the rehydration process in the resurrection plant Craterostigma plantagineum. Plant Physiol 111:1043–1050

    PubMed  CAS  Google Scholar 

  • Bewley JD (1979) Physiological aspects of desiccation tolerance. Ann Rev Plant Physiol 30:195–238

    Article  CAS  Google Scholar 

  • Bewley JD, Krochko JE (1982) Desiccation tolerance. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, vol 12b, New series. Springer, Heidelberg, pp 325–378

    Google Scholar 

  • Bewley JD, Oliver MJ (1992) Desiccation-tolerance in vegetative plant tissues and seeds: protein synthesis in relation to desiccation and a potential role for protection and repair mechanisms. In: Osmond CB, Somero G (eds) Water and life: a comparative analysis of water relationship at the organismic, cellular and molecular levels. Springer, Berlin, pp 141–160

    Google Scholar 

  • Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1(3):355–359

    Google Scholar 

  • Bianchi G, Gamba A, Limiroli R, Pozzi N, Elste R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87:223–226

    Article  CAS  Google Scholar 

  • Bockel C, Salamini F, Bartels D (1998) Isolation and characterization of genes expressed during early events of the dehydration process in the resurrection plant Craterostigma plantagineum. J Plant Physiol 152:158–166

    CAS  Google Scholar 

  • Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228

    Article  PubMed  CAS  Google Scholar 

  • Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678

    PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  PubMed  CAS  Google Scholar 

  • Child GF (1960) Brief notes on the ecology of the resurrection plant Myrothamnus flabellifolia with mention of its water-absorbing abilities. J S Afr Bot 26:1–8

    Google Scholar 

  • Clegg JS (2005) Desiccation tolerance in encysted embryos of the animal extremophile, Artemia. Integr Comp Biol 45:715–724

    Article  PubMed  CAS  Google Scholar 

  • Collett H, Butowt R, Smith J, Farrant JM, Illing N (2003) Photosynthetic genes are differentially transcripted during the dehydration-rehydration cycle in the resurrection plant, Xerophyta humilis. J Exp Bot 54:2593–2595

    Article  PubMed  CAS  Google Scholar 

  • Cooper K, Farrant JM (2002) Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair. J Exp Bot 53:1805–1813

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM (1992) Membrane integrity in anhydrobiotic organisms: towards a mechanism for stabilizing dry cells. In: Somero GN, Osmond CB, Bolin CL (eds) Water and life. A comparative analysis of water relationships at the organismic, cellular and molecular levels. Springer, Berlin, pp 87–113

    Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Plant Physiol 60:73–103

    CAS  Google Scholar 

  • Dalla Vecchia F, Asmar TE, Calamassi R, Rascio N, Vazzana C (1998) Morphological and ultrastructural aspects of dehydration and rehydration in leaves of Sporobolus stapfianus. Plant Growth Reg 24:219–228

    Article  CAS  Google Scholar 

  • Deng X, Phillips J, Meijer AH, Salamini F, Bartels D (2002) Characterization of five novel dehydrationresponsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 49:601–610

    Article  PubMed  CAS  Google Scholar 

  • Dickie JB, Pritchard HW (2002) Systematic and evolutionary aspects of desiccation tolerance in seeds. In: Black M, Pritchard HW (eds) Desiccation and survival of plants – drying without dying. CABI, Wallingford, pp 239–259

    Chapter  Google Scholar 

  • Ditzer A, Bartels D (2006) Identification of stress-responsive promoter elements and isolation of corresponding DNA binding proteins for the LEA gene CpC2 promoter. Plant Mol Biol 61:643–663

    Article  PubMed  CAS  Google Scholar 

  • Farrant JM (2000) A comparation of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol 151:29–39

    Article  Google Scholar 

  • Farrant JM, Kruger LA (2001) Longevity of dry Myrothamnus flabellifolius in simulated field conditions. Plant Growth Reg 35:109–120

    Article  CAS  Google Scholar 

  • Farrant JM, Sherwin HW (1997) Mechanisms of desiccation tolerance in seeds and resurrection plants. In: Taylor AG, Huang XL (eds) Progress in seed research. Proceedings of the second international conference on seed science and technology. Communication Services of the New York State Agricultural Experimental Station, Geneva, NY, pp 109–120

    Google Scholar 

  • Farrant JM, Vander Willigen C, Loffell DA, Bartsch S, Whittaker A (2003) An investigation into the role of light during desiccation of three angiosperm resurrection plants. Plant Cell Environ 26:1275–1286

    Article  CAS  Google Scholar 

  • Farrant JM, Brandt W, Lindsey GG (2007) An overview of mechanisms of desiccation tolerance in selected angiosperm resurrection plants. Plant Stress 1(1):72–84

    Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat shock proteins, evolutionary and ecological physiology. Ann Rev Physiol 61:243–282

    Article  CAS  Google Scholar 

  • Fischer E (1992) Systematik der afrikanischen Lindernieae (Scrophulariaceae). Tropische und subtropische Pflanzenwelt 81:1–365

    Google Scholar 

  • Fischer E (1995) Revision of the Lindernieae (Scrophulariaceae) in Madagascar. 1. The genera Lindernia Allioni and Crepidorhopalon E. Fischer. Bull Mus Natl Hist Nat Paris 4e sér., 17, section B, Adansonia: 227–257

    Google Scholar 

  • Frank W, Phillips JR, Salamini F, Bartels D (1998) Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins. Plant J 15:413–421

    Article  PubMed  CAS  Google Scholar 

  • Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J16:3599–3608

    Google Scholar 

  • Gaff DF (1971) Desiccation-tolerant flowering plants in southern Africa. Science 174:1033–1034

    Article  PubMed  CAS  Google Scholar 

  • Gaff DF (1977) Desiccation tolerant vascular plants of southern Africa. Oecologia 31:95–109

    Article  Google Scholar 

  • Gaff DF (1980) Protoplasmic tolerance of extreme water stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 207–230

    Google Scholar 

  • Gaff DF (1986) Desiccation tolerant “resurrection” grasses from Kenya and West Africa. Oecologia 70:118–120

    Article  Google Scholar 

  • Gaff DF (1989) Responses of desiccation-tolerant “resurrection” plants to water stress. SPB Academic, The Hague

    Google Scholar 

  • Gaff DF, Churchill DM (1976) Borya nitida Labill. – an Australian species in the Liliaceae with desiccation-tolerant leaves. Aust J Bot 24:209–224

    Article  Google Scholar 

  • Gaff DF, Ellis RP (1974) Southern African grasses with foliage that revives after dehydration. Bothalia 11:305–308

    Google Scholar 

  • Gaff DF, Latz PK (1978) The occurrence of resurrection plants in the Australian flora. Aust J Bot 26:485–492

    Article  Google Scholar 

  • Gaff DF, Loveys BR (1984) Abscisic-acid content and effects during dehydration of detached leaves of desiccation tolerant plants. J Exp Bot 35:1350–1358

    Article  CAS  Google Scholar 

  • Gaff DF, Zee S-Y, O’Brien TP (1976) The fine structure of dehydrated and reviving leaves of Borya nitida Labill. – a desiccation-tolerant plant. Aust J Bot 24:225–236

    Article  Google Scholar 

  • Garwe D, Thomson JA, Mundree SG (2003) Molecular characterization of XVSAP1, a stress-responsive gene from the resurrection plant Xerophyta viscosa Baker. J Exp Bot 54:191–201

    Article  PubMed  CAS  Google Scholar 

  • Ghasempour HR, Gaff DF, Williams RPW, Gianello RD (1998) Contents of sugars in leaves of drying desiccation-tolerant flowering plants, particularly grasses. Plant Growth Reg 24:185–191

    Article  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the role of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Haslekas C, Stacy RAP, Nygaard V, Culianez-Macia FA, Aalen RB (1998) The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed-specific and related to dormancy. Plant Mol Biol 36:833–845

    Article  PubMed  CAS  Google Scholar 

  • Hellwege EM, Dietz KJ, Volk OH, Hartung W (1994) Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta 194:525–531

    Article  CAS  Google Scholar 

  • Hetherington SE, Smillie RM, Hallam ND (1982) Humidity-sensitive degreening and regreening of leaves of Borya nitida Labill. as followed by changes in chlorophyll fluorescence. Aust J Plant Physiol 9:587–599

    Article  CAS  Google Scholar 

  • Hilbricht T, Salamini F, Bartels D (2002) CpR18, a novel SAP-domain plant transcription factor, binds to a promoter region necessary for ABA mediated expression of the CdeT27–45 gene from the resurrection plant Craterostigma plantagineum Hochst. Plant J 31:293–303

    Article  PubMed  CAS  Google Scholar 

  • Hilbricht T, Varotto S, Sgaramella V, Bartels D, Salamini F, Furini A (2008) Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol 179:877–887

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra FA (2005) Differential longevities in desiccated anhydrobiotic plant systems. Integr Comp Biol 45:725–733

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation-tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M (2003) Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA 100:4921–4926

    Article  PubMed  CAS  Google Scholar 

  • Iljin WS (1957) Drought-resistance in plants and physiological processes. Annu Rev Plant Physiol 3:341–363

    Google Scholar 

  • Illing N, Denby KJ, Collett H, Shen A, Farrant JM (2005) The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr Comp Biol 45:771–787

    Article  PubMed  CAS  Google Scholar 

  • Ingle RA, Collett H, Cooper K, Takahashi Y, Farrant JM, Illing N (2008) Chloroplast biogenesis during rehydration of the resurrection plant Xerophyta humilis: parallels to the etioplast-chloroplast transition. Plant Cell Environ 31:1813–1824

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration-tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga G, Leyns L, Villegas A, Gharaibeh R, Salamini F, Bartels D (1996) A family of novel myb-related genes from the resurrection plant Craterostigma plantagineum are specifically expressed in callus and roots in response to ABA or desiccation. Plant Mol Biol 32:707–716

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga G, Cushman MAF, Cushman JC (2006) An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes. Plant Sci 170:1173–1184

    Article  CAS  Google Scholar 

  • Jones L, McQueen-Mason S (2004) A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum. FEBS Lett 559:61–65

    Article  PubMed  CAS  Google Scholar 

  • Kappen L, Valladares F (1999) Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autotrophs. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, New York, pp 10–80

    Google Scholar 

  • Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond B Biol Sci 150:149–191

    Article  PubMed  CAS  Google Scholar 

  • Kirch HH, Nair A, Bartels D (2001) Novel ABA- and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana. Plant J 28(5):555–567

    Article  PubMed  CAS  Google Scholar 

  • Kleines M, Elster RC, Rodrigo MJ, Blervacq AS, Salamini F, Bartels D (1999) Isolation and expression analysis of two stress-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.). Planta 209:13–24

    Article  PubMed  CAS  Google Scholar 

  • Kozak CA (1999) Genetic mapping of six mouse peroxiredoxin genes and fourteen peroxiredoxin related sequences. Mamm Genome 10:1017–1019

    Article  PubMed  Google Scholar 

  • Kranner I, Birtić S (2005) A modulating role for antioxidants in desiccation tolerance. Integr Comp Biol 45:734–740

    Article  PubMed  CAS  Google Scholar 

  • Kranner I, Lutzoni F (1999) Evolutionary consequences of transition to a lichen symbiotic state and physiological adaptation to oxidative damage associated with poikilohydry. In: Lerner HR (ed) Plant responses to environmental stress. From phytohormones to genome reorganization. Marcel Dekker, New York, pp 591–628

    Google Scholar 

  • Kranner I, Beckett RP, Wornik S, Zorn M, Pfeinhofer W (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24

    Article  PubMed  CAS  Google Scholar 

  • Król M, Ivanov MG, Jansson S, Kloppstech K, Huner NPA (1999) Greening under high light or cold temperature affects the level of xanthophyllcycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the chlorina f2 mutant. Plant Physiol 120:193–203

    Article  PubMed  Google Scholar 

  • Le TN (2005) Genetics of desiccation tolerance in the resurrection plant Sporobolus stapfianus. PhD thesis. Monash University, Melbourne, Australia

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol 2, Water, radiation, salt and other stresses. Academic, New York

    Google Scholar 

  • Lewis ML, Miki K, Veda T (2000) FePer1, a gene encoding an evolutionary conserved 1-Cys peroxiredoxin in buckwheat (Fagopyrum esculentum Moench), is expressed in a seed-specific manner and induced during seed germination. Gene 246:81–91

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Lu ZJ, Neumann PM (1998) Water stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. J Exp Bot 49:1945–1952

    Article  CAS  Google Scholar 

  • Liu Y, Tengguo Z, Li X, Wang J (2007) Protective mechanisms of desiccation tolerance in Reaumuria soongorica. Sci China Ser C-Life Sci 50:15–21

    Google Scholar 

  • Marais S, Thomson JA, Farrant JM, Mundree SG (2004) XV VHA-C”-1 a novel stress responsive V-ATPhase Subnit C” homologue isolated from the resurrection plant Xerophyta viscosa. Plant Physiol 122:54–64

    Article  CAS  Google Scholar 

  • Mariaux JB, Bockel C, Salamini F, Bartels D (1998) Desiccationand abscisic acid-responsive genes encoding major intrinsic proteins (MIP) from the resurrection plant Craterostigma plantagineum. Plant Mol Biol 38:1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Chrispeels MJ (2001) Aquaporins. A Molecular entry into plant water relations. Plant Physiol 125:135–138

    Article  PubMed  CAS  Google Scholar 

  • Maurel C, Kado RT, Guern J, Chrispeels MJ (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin α-TIP. EMBO J 14:3028–3035

    PubMed  CAS  Google Scholar 

  • Mayee MB, Mundree SG, Majumder AL (2005) Molecular cloning, bacterial overexpression and characterization of L-myo-inositol 1-Phosphate Synthase from a monocotyledonous resurrection plant, Xerophyta viscosa. J Plant Biochem Biotechnol 14:95–98

    Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls – analysis of wall hydrolysis, stress-relaxation, and binding. Plant Physiol 107:87–100

    PubMed  CAS  Google Scholar 

  • Meissner RC, Jin H, Cominelli E, Denekamp M, Fuertes A, Greco R, Kranz HD, Penfield S, Petronik K, Urzainqui A, Martin C, Paz-Ares J, Smeekens S, Tonelli C, Weisshaar B, Baumann E, Klimyuk V, Marillonnet S, Patel S, Speulman E, Tissier AF, Bouchez D, Jones JDG, Periera A, Wisman E, Bevan M (1999) Function search in a large transcription factor gene family in Arabidopsis assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell 11:1827–1840

    Article  PubMed  CAS  Google Scholar 

  • Montané MH, Dreyer S, Triantaphylides C, Kloppstech K (1997) Early light-inducible proteins during long-term acclimation of barley to photooxidative stress caused by light and cold: high level of accumulation by posttranscriptional regulation. Planta 202:293–302

    Article  Google Scholar 

  • Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92(14):6219–6223

    Article  PubMed  CAS  Google Scholar 

  • Moore JP, Lindsey FJM, GG BWF (2005) The South African and Namibian populations of the resurrection plant Myrothamnus flabellifolius are genetically distinct and display variation in their galloquinic acid composition. J Chem Ecol 31:2823–2834

    Article  PubMed  CAS  Google Scholar 

  • Moore JP, Lindsey GG, Farrant JM, Brandt WG (2007) An overview of the biology of desiccation tolerant resurrection plant Myrothamnus flabellifolia. Ann Bot 99:211–217

    Article  PubMed  Google Scholar 

  • Moore JP, Vicré-Gibouin M, Farrant JM, Driouich A (2008) Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant 134:237–245

    Article  PubMed  CAS  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparecio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Mowla SB, Thomson JA, Farrant JM, Mundree SG (2002) A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta 215:716–726

    Article  PubMed  CAS  Google Scholar 

  • Mtwisha L, Farrant J, Brandt W, Lindsey GG (2006) Protection mechanisms against water deficit stress: desiccation tolerance in seeds as a study case. In: Ribaut J (ed) Drought adaptation in cereals. Haworth, New York, pp 531–549

    Google Scholar 

  • Mundree SG, Whittaker A, Thomson JA, Farrant JM (2000) An aldose reductase homolog from the resurrection plant Xerophyta viscose Baker. Planta 211:693–700

    Article  PubMed  CAS  Google Scholar 

  • Mundree SG, Baker B, Mowla S, Peters S, Marais S, Vander Willigen C, Govender K, Maredza A, Muyanga S, Farrant JM, Thomson JA (2002) Physiological and molecular insights into drought tolerance. Afr J Biotechnol 1:28–38

    CAS  Google Scholar 

  • Munns R, Passioura JB, Guo JM, Chazen O, Cramer GR (2000) Water relations and leaf expansion: importance of time scale. J Exp Bot 51:1495–1504

    Article  PubMed  CAS  Google Scholar 

  • Murelli C, Adamo V, Finzi PV, Albini FM, Bochicchio A, Picco AM (1996) Sugar biotransformations by fungi on leaves of the resurrection plant Sporobolus stapfianus. Phytochemistry 43:741–745

    Article  CAS  Google Scholar 

  • Navari-Izzo F, Ricci F, Vazzana C, Quartacci MF (1995) Unusual composition of thylakoid membranes of the resurrection plant Boea hygroscopica: changes in lipids upon dehydration and rehydration. Physiol Plant 94:135–142

    Article  CAS  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Pinzino C, Rascio N, Vazzana C, Sgherri C (2000) Protein dynamics in thylakoids of the desiccation-tolerant plant Boea hygroscopica during dehydration and rehydration. Plant Physiol 124:1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Ndima T, Farrant JM, Thomson J, Mundree S (2001) Molecular characterization of XVT8, a stress-responsive gene from the resurrection plant Xerophyta viscosa Baket. Plant Growth Reg 35:137–145

    Article  CAS  Google Scholar 

  • Neale AD, Blomstedt CK, Bronson P, Le TN, Guthridge K, Evand D, Gaff DF, Hamill JD (2000) The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress. Plant Cell Environ 23:265–277

    Article  CAS  Google Scholar 

  • Norwood M, Toldi O, Richter A, Scott P (2003) Investigation into the ability of roots of the poikilohydric plant Craterostigma plantagineum to survive dehydration stress. J Exp Bot 54:2313–2321

    Article  PubMed  CAS  Google Scholar 

  • Oliver MJ (1996) Desiccation-tolerance in vegetative plant cells. Physiol Plant 97:779–787

    Article  CAS  Google Scholar 

  • Oliver MJ, Bewley JD (1984) Desiccation and ultrastructure in bryophytes. Adv Bryology 2:91–131

    Google Scholar 

  • Oliver MJ, Bewley JD (1997) Desiccation-tolerance in plant tissues. A mechanistic overview. Hortic Rev 18:171–214

    Google Scholar 

  • Oliver MJ, Wood AJ, O’Mahony P (1998) “To dryness and beyond” – preparation for the dried state and rehydration in vegetative desiccation tolerant plants. Plant Growth Reg 24:193–201

    Article  CAS  Google Scholar 

  • Oliver MJ, Tuba Z, Mishler BD (2000) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100

    Article  Google Scholar 

  • Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    Article  PubMed  Google Scholar 

  • Peters S, Mundree SG, Thomson JA, Farrant JM, Keller F (2007) Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosacharides (RFOs) accumulate in leaves in response to water deficit. J Exp Bot 58(8):1947–1956

    Article  PubMed  CAS  Google Scholar 

  • Phillips JR, Hilbricht T, Salamini F, Bartels D (2002) A novel abscisic acid- and dehydration-responsive gene family from the resurrection plant Craterostigma plantagineum encodes a plastid-targeted protein with DNA binding activity. Planta 215:258–266

    Article  PubMed  CAS  Google Scholar 

  • Phillips JR, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597

    Article  PubMed  CAS  Google Scholar 

  • Phillips JR, Fischer E, Baron M, van den Dries N, Facchinelli F, Kutzer M, Rahmanzadeh R, Remus D, Bartels D (2008) Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests. Plant J 54:938–948

    Article  PubMed  CAS  Google Scholar 

  • Porembski S, Barthlott W (2000) Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecol 151:19–28

    Article  Google Scholar 

  • Proctor MCF, Pence VC (2002) Vegetative tissues: bryophytes, vascular resurrection plants, and vegetative propogules. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI, Wallingford, Oxon, pp 207–237

    Chapter  Google Scholar 

  • Provart NJ, Gil P, Chen W, Han B, Chang HS, Wang X, Zhu T (2003) Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol 132:893–906

    Article  PubMed  CAS  Google Scholar 

  • Quartacci MF, Forli M, Rascio N, DallaVecchia F, Bochicchio A, Navari-Izzo F (1997) Desiccation-tolerant Sporobolus stapfianus: lipid composition and cellular ultrastructure during dehydration and rehydration. J Exp Bot 48:1269–1279

    Article  CAS  Google Scholar 

  • Quartacci MF, Glisic O, Stevanovic B, Navari-Izzo F (2002) Plasma membrane lipids in the resurrection plant Ramonda serbica following dehydration and rehydration. J Exp Bot 53:2159–2166

    Article  PubMed  CAS  Google Scholar 

  • Rahmanzadeh R, Müller K, Fischer E, Bartels D, Borsch T (2005) The Linderniaceae and Gratiolaceae are further lineages distinct from the Scrophulariaceae (Lamiales). Plant Biol 7:1–12

    Article  CAS  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  PubMed  CAS  Google Scholar 

  • Rascio N, La Rocca N (2005) Resurrection plants: the puzzle of surviving extreme vegetative desiccation. Crit Rev Plant Sci 24:209–225

    Article  CAS  Google Scholar 

  • Reynolds TL, Bewley JD (1993) Abasicic acid enhances the ability of the desiccation tolerant fern Polypodium virginianum to withstand drying. J Exp Bot 44:1771–1779

    Article  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Edsgard D, Hussain SS, Alquezar A, Rasmussen M, Gilbert T, Nielsen B, Bartels D, Mundy J (2010) Transcriptomes of the desiccation tolerant resurrection plant Craterostigma plantagineum. Plant J 63:212–228

    Article  PubMed  CAS  Google Scholar 

  • Savenstrand H, Olofsson M, Samuelsson M, Strid A (2004) Induction of early-inducible protein gene expression in Pisum sativum after exposure to low levels of UV-B radiation and other environmental stresses. Plant Cell Rep 22:532–536

    Article  PubMed  CAS  Google Scholar 

  • Schiller P, Heilmeier H, Hartung W (1997) Absisic acid (ABA) relations in the aquatic resurrection plant Chamaegigas intrepidus under naturally fluctuating environmental conditions. New Phytol 136:603–611

    Article  CAS  Google Scholar 

  • Schneider K, Wells B, Schmelzer E, Salamini F, Bartels D (1993) Desiccation leads to the rapid accumulation of both cytosol and chloroplast proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta 189:120–131

    Article  CAS  Google Scholar 

  • Scott P (2000) Resurrection plants and the secrets of eternal leaf. Ann Bot 85:159–166

    Article  CAS  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  PubMed  CAS  Google Scholar 

  • Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth – ancient sacred lotus from China. Am J Bot 82:1367–1380

    Article  Google Scholar 

  • Sherwin HW, Farrant JM (1996) Differences in rehydration of three desiccation tolerant angiosperm species. Ann Bot 78:703–710

    Article  Google Scholar 

  • Sherwin HW, Farrant JM (1998) Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. Plant Growth Reg 24:203–210

    Article  CAS  Google Scholar 

  • Shigyo M, Haseba M, Ito M (2006) Molecular evolution of the AP2 subfamily. Gene 366:256–265

    Article  PubMed  CAS  Google Scholar 

  • Smith-Espinoza CJ, Phillips JR, Salamini F, Bartels D (2005) Identification of further Craterostigma plantagineum cdt mutants affected in abscisic acid mediated desiccation tolerance. Mol Gen Genom 274:364–372

    Article  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Thomson WW, Platt KA (1997) Conservation of cell order in desiccated mesophyll of Selaginella lepidophylla ([Hook and Grev.] Spring). Ann Bot 79:439–447

    Article  Google Scholar 

  • Trainor FR, Gladych R (1995) Survival of algae in a desiccated soil: a 35-year study. Phycologia 34:191–192

    Article  Google Scholar 

  • Tuba Z, Proctor MCF, Csintalan Z (1998) Ecophysiological responses of homoiochlorophyllous and poikilochlorophyllous desiccation-tolerant plants: a comparison and an ecological perspective. Plant Growth Reg 24:211–217

    Article  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  PubMed  CAS  Google Scholar 

  • Vander Willigen C, Farrant JM, Pammenter NW (2001) Anomalous pressure volume curves of resurrection plants do not suggest negative turgor. Ann Bot 88:537–543

    Article  Google Scholar 

  • Vander Willigen C, Pammenter CNW, Jaffer MA, Mundree SG, Farrant JM (2003) An ultrastructural study using anhydrous fixation of Eragrostis nindensis, a resurrection grass with both desiccation-tolerant and sensitice tissues. Funct Plant Biol 30:1–10

    Article  Google Scholar 

  • Vander Willigen C, Pammenter NW, Mundree SG, Farrant JM (2004) Mechanical stabilization of desiccated vegetative tissues of the resurrection grass Eragrostis nindensis: does a TIP 3;1 and/or compartimentation of subcellular components and metabolites play a role? J Exp Bot 397:651–661

    Article  Google Scholar 

  • Vicré M, Sherwin HW, Driouich A, Jaffer MA, Farrant JM (1999) Cell wall characteristics and structure of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii, a microscopical study. J Plant Physiol 155:719–726

    Google Scholar 

  • Vicré M, Lerouxel O, Farrant J, Lerouge P, Driouich A (2004) Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii. Physiol Plant 120:229–239

    Article  PubMed  Google Scholar 

  • Villalobos MA, Bartels D, Iturriaga G (2004) Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiol 135:309–324

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Shang H, Liu X, Wu R, Zheng M, Phillips J, Bartels D, Deng X (2009) A cell wall localised glycine-rich protein plays a role in dehydration tolerance in the resurrection plant Boea hygrometrica. Plant Biol 12:1–13

    Google Scholar 

  • Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat shock proteins is part of the developmental program of late seed maturation. Plant Physiol 112:747–757

    Article  PubMed  CAS  Google Scholar 

  • Willige B, Kutzer M, Tebartz F, Bartels D (2009) Subcellular localization and enzymatic properties of differentially expressed transketolase genes isolated from the desiccation tolerant resurrection plant Craterostigma plantagineum. Planta 229:659–666

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238:17–25

    PubMed  CAS  Google Scholar 

  • Zeng Q, Chen X, Wood AJ (2002) Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity, and high light. J Exp Bot 53:1197–1205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. E. Fischer for advice on the geographical distribution of desiccation-tolerant species and for providing the information contained in Table 16.1. Work in the laboratory of D.B. was supported by grants from the German Research Council, by the European training network ADONIS and by an ERA-PG project. D.B. is a member of the European COST action INPAS (International Network of Plant Abiotic Stress). We thank C. Marikar for help with the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Bartels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartels, D., Hussain, S.S. (2011). Resurrection Plants: Physiology and Molecular Biology. In: Lüttge, U., Beck, E., Bartels, D. (eds) Plant Desiccation Tolerance. Ecological Studies, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19106-0_16

Download citation

Publish with us

Policies and ethics