Advertisement

Chamaegigas intrepidus DINTER: An Aquatic Poikilohydric Angiosperm that Is Perfectly Adapted to Its Complex and Extreme Environmental Conditions

  • Hermann HeilmeierEmail author
  • Wolfram Hartung
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 215)

Abstract

Chamaegigas intrepidus DINTER is a tiny poikilohydric member of the Scrophulariaceae growing endemically in ephemeral rock pools on granite outcrops in Central Namibia. Environmental conditions are complex and extreme: (1) frequent and rapid desiccation and rehydration during the rainy summer season, (2) complete dehydration during the dry winter season lasting up to 11 months, (3) intensive solar irradiation and high temperatures during the dry season, (4) diurnal oscillations of pH in the pool water between pH 6 and 12, and (5) extreme nutrient deficiencies, especially of nitrogen. Anatomical, biochemical and physiological adaptations to this complex of extreme environmental conditions are discussed.

The extreme environmental conditions with the very short period for physiological activity imply specific adaptations for generative reproduction. In this context, flower morphology and its importance for interactions with potential pollinators and the implications for gene flow for this endemic species from ephemeral and highly isolated habitats are discussed.

Keywords

Dissolve Organic Nitrogen Pool Water Rock Pool Resurrection Plant Longitudinal Shrinkage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by Schimper-Stiftung (H.H.) and DFG-SFB 251 (W.H.). A. and W. Wartinger and B. Dierich excellently assisted in the field work and performed laboratory experiments. We thank D. Morsbach (Ministry of Wildlife, Conservation and Tourism) and Dr. B. Strohbach (National Botanical Research Institute, Windhoek) for their support. We are indebted to Mrs. Arnold and Mrs. and Mr. Gaerdes for their great hospitality on Otjua farm. E. Brinckmann was a great help in any respect. We appreciate the great interest of Prof. Dr. O.L. Lange in all aspects of this study.

References

  1. Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34CrossRefGoogle Scholar
  2. Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1:355–359Google Scholar
  3. Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1992) Low molecular weight solutes in desiccated and ABA treated calli and leaves of Craterostigma plantagineum. Phytochem 31:1917–1922CrossRefGoogle Scholar
  4. Bornefeld T, Volk OH (2002) Annotations to a collection of liverworts (Hepaticae, Marchantiales) from Omaruru District, Namibia, during summer 1997. Dinteria 27:13–17Google Scholar
  5. Bourguignon J, Vauclare P, Merand V, Forest E, Neuburger M, Douce R (1993) Glycine decarboxylase complex from higher plants. Molecular cloning, tissue distribution and mass spectrometry analysis of the T-protein. Eur J Biochem 217:377–386PubMedCrossRefGoogle Scholar
  6. Bruni F, Leopold AC (1991) Glass transitions in soybean seeds. Relevance to anhydrous biology Plant Physiol 96:660–663Google Scholar
  7. Chapin FS III, Mollanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153CrossRefGoogle Scholar
  8. Dinter K (1909) Deutsch-Südwest-Afrika. Flora, Forst- und landwirtschaftliche Fragmente. Theodor Oswalt Weigel, LeipzigGoogle Scholar
  9. Dinter K (1918) Botanische Reisen in Deutsch-Südwest-Afrika. Feddes Repert. Beiheft 3Google Scholar
  10. Durka W, Woitke M, Hartung W, Hartung S, Heilmeier H (2004) Genetic diversity in Chamaegigas intrepidus (Scrophulariaceae). In: Breckle SW, Schweizer B, Fangmeier A (eds) Results of worldwide ecological studies Proc 2nd Symp Schimper Foundation. Günter Heimbach, Stuttgart, pp 257–265Google Scholar
  11. Fischer E (1992) Systematik der afrikanischen Lindernieae (Scrophulariaceae). Trop Subtrop Pflanzenwelt 81. Fritz Steiner, StuttgartGoogle Scholar
  12. Freundl E, Steudle E, Hartung W (2000) Apoplastic transport of abscisic acid through roots of maize: effect of the exodermis. Planta 210:222–231PubMedCrossRefGoogle Scholar
  13. Gaff DF (1977) Desiccation tolerant vascular plants of Southern Africa. Oecologia 31:95–109CrossRefGoogle Scholar
  14. Gaff DF (1987) Desiccation tolerant plants in South America. Oecologia 74:133–136CrossRefGoogle Scholar
  15. Gaff DF, Giess W (1986) Drought resistance in water plants in rock pools of Southern Africa. Dinteria 18:17–36Google Scholar
  16. Giess W (1969) Die Verbreitung von Lindernia intrepidus (Dinter) Oberm. (Chamaegigas intrepidus Dinter) in Südwestafrika. Dinteria 2:23–27Google Scholar
  17. Giess W (1997) A preliminary vegetation map of Namibia. 3 rd rev edn. Dinteria 4:1–112Google Scholar
  18. Guttenberg H von (1968) Der primäre Bau der Angiospermenwurzel. Handbuch der Pflanzenanatomie 8, Teil 5. Borntraeger, Berlin-StuttgartGoogle Scholar
  19. Hartung W, Ratcliffe RG (2002) The utilization of glycine and serine as nitrogen sources in roots of Zea mays and Chamaegigas intrepidus. J exp Bot 53:2305–2314PubMedCrossRefGoogle Scholar
  20. Hartung W, Slovik S (1991) Physico-chemical properties of plant growth regulators and plant tissues determine their distribution and redistribution. New Phytol 119:361–382CrossRefGoogle Scholar
  21. Hartung W, Sauter A, Turner NC, Fillery I, Heilmeier H (1996) Abscisic acid in soils: what is its function and which factors and mechanisms influence its concentration? Plant Soil 184:105–110CrossRefGoogle Scholar
  22. Hartung W, Schiller P, Dietz KJ (1998) Physiology of poikilohydric plants. Prog Bot 59:299–327Google Scholar
  23. Heil H (1924) Chamaegigas intrepidus Dtr., eine neue Auferstehungspflanze. Beih bot Zbl 41:41–50Google Scholar
  24. Heilmeier H, Hartung W (2001) Survival strategies under extreme and complex environmental conditions: the aquatic resurrection plant Chamaegigas intrepidus. Flora 196:245–260Google Scholar
  25. Heilmeier H, Ratcliffe RG, Hartung W (2000) Urea: a nitrogen source for the aquatic resurrection plant Chamaegigas intrepidus Dinter. Oecologia 123:9–14CrossRefGoogle Scholar
  26. Heilmeier H, Wolf R, Wacker R, Hartung W (2002) Observations on the anatomy of hydrated and desiccated roots of Chamaegigas intrepidus Dinter. Dinteria 27:1–12Google Scholar
  27. Heilmeier H, Durka W, Woitke M, Hartung W (2005) Ephemeral pools as stressful and isolated habitats for the endemic aquatic resurrection plant Chamaegigas intrepidus. Phytocoenologia 35:449–468CrossRefGoogle Scholar
  28. Hickel B (1967) Zur Kenntnis einer xerophilen Wasserpflanze: Chamaegigas intrepidus DTR. aus Südwestafrika. Int Revue Ges Hydrobio 52:361–400CrossRefGoogle Scholar
  29. Kok OB, Grobbelaar JU (1985) Notes on the availability and chemical composition of water from the gravel plains of the Namib-Naukluft Park. J Limnol Soc South Afr 11:66–70Google Scholar
  30. Landolt E, Kandeler R (1987) The family of Lemnaceae – a monographic study. II Phytochemistry, physiology, application bibliography. Veröff Geobot Inst ETH. Stiftung Rübel 95:270–272Google Scholar
  31. Marris E (2008) More crop per drop. Nature 452:273–277PubMedCrossRefGoogle Scholar
  32. Mouillon JM, Aubert S, Bourguignon J, Gout E, Douce R, Rébeillé F (1999) Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C1 metabolism. Plant J 20:197–205PubMedCrossRefGoogle Scholar
  33. Norwood M, Truesdale MR, Richter AM, Scott P (1999) Metabolic changes in leaves during dehydration of the resurrection plant Craterostigma plantagineum (Hochst). South Afr J Bot 65:1–7Google Scholar
  34. Norwood M, Truesdale MR, Richter AM, Scott P (2000) Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. J exp Bot 51:159–165PubMedCrossRefGoogle Scholar
  35. Porembski S, Barthlott W (2000) Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecol 151:19–28CrossRefGoogle Scholar
  36. Raab TK, Lipson DA, Monson RK (1996) Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia 108:488–494CrossRefGoogle Scholar
  37. Raab TK, Lipson DA, Monson RK (1999) Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 80:2408–2419CrossRefGoogle Scholar
  38. Schiller P (1998) Anatomische, physiologische und biochemische Anpassungen der aquatischen Auferstehungspflanze Chamaegigas intrepidus an ihren extremen Standort. PhD Dissertation, Julius-Maximilians-Universität WürzburgGoogle Scholar
  39. Schiller P, Heilmeier H, Hartung W (1997) Abscisic acid (ABA) relations in the aquatic resurrection plant Chamaegigas intrepidus under naturally fluctuating environmental conditions. New Phytol 136:603–611CrossRefGoogle Scholar
  40. Schiller P, Hartung W, Ratcliffe RG (1998a) Intracellular pH stability in the aquatic resurrection plant Chamaegigas intrepidus in the extreme environmental conditions that characterize its natural habitat. New Phytol 140:1–7CrossRefGoogle Scholar
  41. Schiller P, Heilmeier H, Hartung W (1998b) Uptake of amino acids by the aquatic resurrection plant Chamaegigas intrepidus and its implication for N nutrition. Oecologia 117:63–69CrossRefGoogle Scholar
  42. Schiller P, Wolf R, Hartung W (1999) A scanning electromicroscopical study of hydrated and desiccated submerged leaves of the aquatic resurrection plant Chamaegigas intrepidus. Flora 194:97–102Google Scholar
  43. Schmidt S, Stewart GR (1999) Glycine metabolism in plant roots and its occurrence in Australian plant communities. Austr J Plant Physiol 26:253–264CrossRefGoogle Scholar
  44. Scott P (2000) Resurrection plants and the secrets of eternal leaf. Ann Bot 85:159–166CrossRefGoogle Scholar
  45. Slovik S, Daeter W, Hartung W (1995) Compartmental redistribution and long distance transport of abscisic acid (ABA) in plants as influenced by environmental changes in the rhizosphere. A biomathematical model J exp Bot 46:881–894CrossRefGoogle Scholar
  46. Vicrè M, Sherwin HW, Driouich A, Jaffer MA, Farrant JM (1999) Cell wall characteristics and structure of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii, a microscopical study. J Plant Physiol 155:719–726Google Scholar
  47. Walton NJ, Woodhouse HW (1986) Enzymes of serine and glycine metabolism in leaves and non photosynthetic tissues of Pisum sativum L. Planta 167:119–128CrossRefGoogle Scholar
  48. Woitke M, Hartung W, Gimmler H, Heilmeier H (2004) Chlorophyll fluorescence of the submerged and floating leaves of the aquatic resurrection plant Chamaegigas intrepidus. Funct Plant Biol 31:53–62CrossRefGoogle Scholar
  49. Woitke M, Wolf R, Hartung W, Heilmeier H (2006) Flower morphology of the resurrection plant Chamaegigas intrepidus Dinter and some of its potential pollinators. Flora 201:281–286Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Interdisziplinäres Ökologisches ZentrumTU Bergakademie FreibergFreibergGermany
  2. 2.Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl Botanik IUniversität WürzburgWürzburgGermany

Personalised recommendations