Skip to main content

Chamaegigas intrepidus DINTER: An Aquatic Poikilohydric Angiosperm that Is Perfectly Adapted to Its Complex and Extreme Environmental Conditions

  • Chapter
  • First Online:
Plant Desiccation Tolerance

Part of the book series: Ecological Studies ((ECOLSTUD,volume 215))

Abstract

Chamaegigas intrepidus DINTER is a tiny poikilohydric member of the Scrophulariaceae growing endemically in ephemeral rock pools on granite outcrops in Central Namibia. Environmental conditions are complex and extreme: (1) frequent and rapid desiccation and rehydration during the rainy summer season, (2) complete dehydration during the dry winter season lasting up to 11 months, (3) intensive solar irradiation and high temperatures during the dry season, (4) diurnal oscillations of pH in the pool water between pH 6 and 12, and (5) extreme nutrient deficiencies, especially of nitrogen. Anatomical, biochemical and physiological adaptations to this complex of extreme environmental conditions are discussed.

The extreme environmental conditions with the very short period for physiological activity imply specific adaptations for generative reproduction. In this context, flower morphology and its importance for interactions with potential pollinators and the implications for gene flow for this endemic species from ephemeral and highly isolated habitats are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Plants and cultures of C. plantagineum used in European laboratories for ecophysiological and molecular studies originate from a plant brought from this site to Germany by Prof. Dr. O.H. Volk.

References

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34

    Article  CAS  Google Scholar 

  • Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1991) Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J 1:355–359

    Google Scholar 

  • Bianchi G, Gamba A, Murelli C, Salamini F, Bartels D (1992) Low molecular weight solutes in desiccated and ABA treated calli and leaves of Craterostigma plantagineum. Phytochem 31:1917–1922

    Article  CAS  Google Scholar 

  • Bornefeld T, Volk OH (2002) Annotations to a collection of liverworts (Hepaticae, Marchantiales) from Omaruru District, Namibia, during summer 1997. Dinteria 27:13–17

    Google Scholar 

  • Bourguignon J, Vauclare P, Merand V, Forest E, Neuburger M, Douce R (1993) Glycine decarboxylase complex from higher plants. Molecular cloning, tissue distribution and mass spectrometry analysis of the T-protein. Eur J Biochem 217:377–386

    Article  PubMed  CAS  Google Scholar 

  • Bruni F, Leopold AC (1991) Glass transitions in soybean seeds. Relevance to anhydrous biology Plant Physiol 96:660–663

    CAS  Google Scholar 

  • Chapin FS III, Mollanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153

    Article  CAS  Google Scholar 

  • Dinter K (1909) Deutsch-Südwest-Afrika. Flora, Forst- und landwirtschaftliche Fragmente. Theodor Oswalt Weigel, Leipzig

    Google Scholar 

  • Dinter K (1918) Botanische Reisen in Deutsch-Südwest-Afrika. Feddes Repert. Beiheft 3

    Google Scholar 

  • Durka W, Woitke M, Hartung W, Hartung S, Heilmeier H (2004) Genetic diversity in Chamaegigas intrepidus (Scrophulariaceae). In: Breckle SW, Schweizer B, Fangmeier A (eds) Results of worldwide ecological studies Proc 2nd Symp Schimper Foundation. Günter Heimbach, Stuttgart, pp 257–265

    Google Scholar 

  • Fischer E (1992) Systematik der afrikanischen Lindernieae (Scrophulariaceae). Trop Subtrop Pflanzenwelt 81. Fritz Steiner, Stuttgart

    Google Scholar 

  • Freundl E, Steudle E, Hartung W (2000) Apoplastic transport of abscisic acid through roots of maize: effect of the exodermis. Planta 210:222–231

    Article  PubMed  CAS  Google Scholar 

  • Gaff DF (1977) Desiccation tolerant vascular plants of Southern Africa. Oecologia 31:95–109

    Article  Google Scholar 

  • Gaff DF (1987) Desiccation tolerant plants in South America. Oecologia 74:133–136

    Article  Google Scholar 

  • Gaff DF, Giess W (1986) Drought resistance in water plants in rock pools of Southern Africa. Dinteria 18:17–36

    Google Scholar 

  • Giess W (1969) Die Verbreitung von Lindernia intrepidus (Dinter) Oberm. (Chamaegigas intrepidus Dinter) in Südwestafrika. Dinteria 2:23–27

    Google Scholar 

  • Giess W (1997) A preliminary vegetation map of Namibia. 3 rd rev edn. Dinteria 4:1–112

    Google Scholar 

  • Guttenberg H von (1968) Der primäre Bau der Angiospermenwurzel. Handbuch der Pflanzenanatomie 8, Teil 5. Borntraeger, Berlin-Stuttgart

    Google Scholar 

  • Hartung W, Ratcliffe RG (2002) The utilization of glycine and serine as nitrogen sources in roots of Zea mays and Chamaegigas intrepidus. J exp Bot 53:2305–2314

    Article  PubMed  CAS  Google Scholar 

  • Hartung W, Slovik S (1991) Physico-chemical properties of plant growth regulators and plant tissues determine their distribution and redistribution. New Phytol 119:361–382

    Article  CAS  Google Scholar 

  • Hartung W, Sauter A, Turner NC, Fillery I, Heilmeier H (1996) Abscisic acid in soils: what is its function and which factors and mechanisms influence its concentration? Plant Soil 184:105–110

    Article  CAS  Google Scholar 

  • Hartung W, Schiller P, Dietz KJ (1998) Physiology of poikilohydric plants. Prog Bot 59:299–327

    CAS  Google Scholar 

  • Heil H (1924) Chamaegigas intrepidus Dtr., eine neue Auferstehungspflanze. Beih bot Zbl 41:41–50

    Google Scholar 

  • Heilmeier H, Hartung W (2001) Survival strategies under extreme and complex environmental conditions: the aquatic resurrection plant Chamaegigas intrepidus. Flora 196:245–260

    Google Scholar 

  • Heilmeier H, Ratcliffe RG, Hartung W (2000) Urea: a nitrogen source for the aquatic resurrection plant Chamaegigas intrepidus Dinter. Oecologia 123:9–14

    Article  Google Scholar 

  • Heilmeier H, Wolf R, Wacker R, Hartung W (2002) Observations on the anatomy of hydrated and desiccated roots of Chamaegigas intrepidus Dinter. Dinteria 27:1–12

    Google Scholar 

  • Heilmeier H, Durka W, Woitke M, Hartung W (2005) Ephemeral pools as stressful and isolated habitats for the endemic aquatic resurrection plant Chamaegigas intrepidus. Phytocoenologia 35:449–468

    Article  Google Scholar 

  • Hickel B (1967) Zur Kenntnis einer xerophilen Wasserpflanze: Chamaegigas intrepidus DTR. aus Südwestafrika. Int Revue Ges Hydrobio 52:361–400

    Article  Google Scholar 

  • Kok OB, Grobbelaar JU (1985) Notes on the availability and chemical composition of water from the gravel plains of the Namib-Naukluft Park. J Limnol Soc South Afr 11:66–70

    CAS  Google Scholar 

  • Landolt E, Kandeler R (1987) The family of Lemnaceae – a monographic study. II Phytochemistry, physiology, application bibliography. Veröff Geobot Inst ETH. Stiftung Rübel 95:270–272

    Google Scholar 

  • Marris E (2008) More crop per drop. Nature 452:273–277

    Article  PubMed  CAS  Google Scholar 

  • Mouillon JM, Aubert S, Bourguignon J, Gout E, Douce R, Rébeillé F (1999) Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C1 metabolism. Plant J 20:197–205

    Article  PubMed  CAS  Google Scholar 

  • Norwood M, Truesdale MR, Richter AM, Scott P (1999) Metabolic changes in leaves during dehydration of the resurrection plant Craterostigma plantagineum (Hochst). South Afr J Bot 65:1–7

    Google Scholar 

  • Norwood M, Truesdale MR, Richter AM, Scott P (2000) Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. J exp Bot 51:159–165

    Article  PubMed  CAS  Google Scholar 

  • Porembski S, Barthlott W (2000) Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecol 151:19–28

    Article  Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1996) Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia 108:488–494

    Article  Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1999) Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 80:2408–2419

    Article  Google Scholar 

  • Schiller P (1998) Anatomische, physiologische und biochemische Anpassungen der aquatischen Auferstehungspflanze Chamaegigas intrepidus an ihren extremen Standort. PhD Dissertation, Julius-Maximilians-Universität Würzburg

    Google Scholar 

  • Schiller P, Heilmeier H, Hartung W (1997) Abscisic acid (ABA) relations in the aquatic resurrection plant Chamaegigas intrepidus under naturally fluctuating environmental conditions. New Phytol 136:603–611

    Article  CAS  Google Scholar 

  • Schiller P, Hartung W, Ratcliffe RG (1998a) Intracellular pH stability in the aquatic resurrection plant Chamaegigas intrepidus in the extreme environmental conditions that characterize its natural habitat. New Phytol 140:1–7

    Article  Google Scholar 

  • Schiller P, Heilmeier H, Hartung W (1998b) Uptake of amino acids by the aquatic resurrection plant Chamaegigas intrepidus and its implication for N nutrition. Oecologia 117:63–69

    Article  Google Scholar 

  • Schiller P, Wolf R, Hartung W (1999) A scanning electromicroscopical study of hydrated and desiccated submerged leaves of the aquatic resurrection plant Chamaegigas intrepidus. Flora 194:97–102

    Google Scholar 

  • Schmidt S, Stewart GR (1999) Glycine metabolism in plant roots and its occurrence in Australian plant communities. Austr J Plant Physiol 26:253–264

    Article  CAS  Google Scholar 

  • Scott P (2000) Resurrection plants and the secrets of eternal leaf. Ann Bot 85:159–166

    Article  CAS  Google Scholar 

  • Slovik S, Daeter W, Hartung W (1995) Compartmental redistribution and long distance transport of abscisic acid (ABA) in plants as influenced by environmental changes in the rhizosphere. A biomathematical model J exp Bot 46:881–894

    Article  CAS  Google Scholar 

  • Vicrè M, Sherwin HW, Driouich A, Jaffer MA, Farrant JM (1999) Cell wall characteristics and structure of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii, a microscopical study. J Plant Physiol 155:719–726

    Google Scholar 

  • Walton NJ, Woodhouse HW (1986) Enzymes of serine and glycine metabolism in leaves and non photosynthetic tissues of Pisum sativum L. Planta 167:119–128

    Article  CAS  Google Scholar 

  • Woitke M, Hartung W, Gimmler H, Heilmeier H (2004) Chlorophyll fluorescence of the submerged and floating leaves of the aquatic resurrection plant Chamaegigas intrepidus. Funct Plant Biol 31:53–62

    Article  CAS  Google Scholar 

  • Woitke M, Wolf R, Hartung W, Heilmeier H (2006) Flower morphology of the resurrection plant Chamaegigas intrepidus Dinter and some of its potential pollinators. Flora 201:281–286

    Google Scholar 

Download references

Acknowledgements

This work was supported by Schimper-Stiftung (H.H.) and DFG-SFB 251 (W.H.). A. and W. Wartinger and B. Dierich excellently assisted in the field work and performed laboratory experiments. We thank D. Morsbach (Ministry of Wildlife, Conservation and Tourism) and Dr. B. Strohbach (National Botanical Research Institute, Windhoek) for their support. We are indebted to Mrs. Arnold and Mrs. and Mr. Gaerdes for their great hospitality on Otjua farm. E. Brinckmann was a great help in any respect. We appreciate the great interest of Prof. Dr. O.L. Lange in all aspects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Heilmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heilmeier, H., Hartung, W. (2011). Chamaegigas intrepidus DINTER: An Aquatic Poikilohydric Angiosperm that Is Perfectly Adapted to Its Complex and Extreme Environmental Conditions. In: Lüttge, U., Beck, E., Bartels, D. (eds) Plant Desiccation Tolerance. Ecological Studies, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19106-0_12

Download citation

Publish with us

Policies and ethics