Skip to main content

Mechanical Aspects of Gravity-Controlled Growth, Development and Morphogenesis

  • Chapter
  • First Online:
Mechanical Integration of Plant Cells and Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 9))

Abstract

Plants are “addicted” to gravity. Gravity is the most constant physical force and acts on all organisms in the same way. Plants need this vectorial physical force for their roots to grow down into soil to search for water and mineral nutrients, and for their shoots to grow up to allow optimal exposure of their leaves to light. The plant body form and plant morphogenesis depend on gravity, which acts as a reference force for plant development. Gravity-controlled morphogenesis of plants seems to rely on multiple gravity-sensing mechanisms. Despite more than 100 years of study, plant gravisensing is still as mysterious as it was in 1900, when, for the first time, the statolith theory was proposed by Bohumil Nemec and Gottlieb Haberlandt. Some 10 years after its initial acceptance, this theory was put aside for some 50 years. In the 1960s, it was resuscitated and presently dominates our scientific thinking. Nevertheless, how gravity is perceived and what the gravity transduction pathways are remain enigmatic. In this chapter, we first discuss the physical properties of the cytoplasm. Then, we provide an overview the starch-based amyloplasts and some other possible statolith candidates for sedimentation to the physical bottom. We list several unconventional processes and structures, both at the subcellular and at the supracellular level, which emerge to play a role in plant gravisensing. Finally, we point out surprising differences in sensing of gravity between roots and shoots. Although there are several common themes, such as amyloplast sedimentation, relevance of endomembranes and endocytic vesicle recycling, as well as of the actin cytoskeleton, and the polar transport of auxin, there are very profound differences between root and shoot sensing of gravity. Obviously, plant gravisensing will keep plant scientists busy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnati LF, Fuxe K, Baluška F, Guidolin D (2009) Implications of the ‘Energide’ concept for communication and information handling in the central nervous system. J Neural Transm 11:1037–1052

    Article  Google Scholar 

  • Alassimone J, Naseer S, Geldner N (2010) A developmental framework for endodermal differentiation and polarity. Proc Natl Acad Sci USA 107:5214–5219

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT (2010) Plant volatiles. Curr Biol 20:R392–R397

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Hasenstein KH (1997) Root cytoskeleton: its role in perception of and response to gravity. Planta 203:S69–S78

    Article  PubMed  Google Scholar 

  • Baluška F, Hlavacka A (2005) Plant formins come to age: something special about cross-walls. New Phytol 168:499–503

    Article  PubMed  Google Scholar 

  • Baluška F, Kubica Š, Hauskrecht M (1990) Postmitotic ‘isodiametric’ cell growth in the maize root apex. Planta 181:269–274

    Article  Google Scholar 

  • Baluška F, Parker JS, Barlow PW (1993) A role for gibberellic acid in orienting microtubules and regulating cell growth polarity in the maize root cortex. Planta 191:149–157

    Article  Google Scholar 

  • Baluška F, Barlow PW, Parker JS, Volkmann D (1996) Symmetric reorganizations of radiating microtubules around pre-mitotic and post-mitotic nuclei of dividing cells organized within intact root meristems. J Plant Physiol 149:119–128

    Google Scholar 

  • Baluška F, Vitha S, Barlow PW, Volkmann D (1997a) Rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: a major developmental switch occurs in the postmitotic transition region. Eur J Cell Biol 72:113–121

    PubMed  Google Scholar 

  • Baluška F, Kreibaum A, Vitha S, Parker JS, Barlow PW, Sievers A (1997b) Central root cap cells are depleted of endoplasmic microtubules and actin microfilament bundles: implications for their role as gravity-sensing statocytes. Protoplasma 196:212–223

    Article  PubMed  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (1997c) Nuclear components with microtubule organizing properties in multicellular eukaryotes: functional and evolutionary considerations. Int Rev Cytol 175:91–135

    Article  PubMed  Google Scholar 

  • Baluška F, Lichtscheidl IK, Volkmann D, Barlow PW (1998) The plant cell body: a cytoskeletal tool for cellular development and morphogenesis. Protoplasma 202:1–10

    Article  Google Scholar 

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua N-H, Barlow PW, Volkmann D (2000a) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Barlow PW, Volkmann D (2000b) Actin and myosin VIII in developing root cells. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 457–476

    Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2000c) Actin-based domains of the ‘cell periphery complex’ and their associations with polarized ‘cell bodies’ in higher plants. Plant Biol 2:253–267

    Article  Google Scholar 

  • Baluška F, Cvrčková F, Kendrick-Jones J, Volkmann D (2001) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126:39–46

    Article  PubMed  Google Scholar 

  • Baluška F, Hlavačka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells: insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003a) Cytoskeleton – plasma membrane – cell wall continuum in plants: emerging links revisited. Plant Physiol 133:482–491

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Menzel D (2003b) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 13:282–285

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2004a) Cell bodies in a cage. Nature 428:371

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2004b) Eukaryotic cells and their cell bodies: cell theory revisited. Ann Bot 94:9–32

    Article  PubMed  CAS  Google Scholar 

  • Baluška F et al (2004c) Myosin VIII and F-actin enriched plasmodesmata in maize root inner cortex cells accomplish fluid-phase endocytosis via an actomyosin-dependent process. J Exp Bot 55:463–473

    Article  PubMed  Google Scholar 

  • Baluška F, Volkmann D, Menzel D (2005a) Plant synapses: actin-based adhesion domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Liners F, Hlavačka A, Schlicht M, Van Cutsem P, McCurdy D, Menzel D (2005b) Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma 225:141–155

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2006a) Cell-cell channels and their implications for cell theory. In: Baluška F, Volkmann D, Barlow PW (eds) Cell-cell channels. Landes Bioscience, Austin, pp 1–18

    Chapter  Google Scholar 

  • Baluška F, Menzel D, Barlow PW (2006b) Cytokinesis in plant and animal cells: endosomes ‘shut the door’. Dev Biol 294:1–10

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Barlow PW, Volkmann D, Mancuso S (2007) Gravity related paradoxes in plants: plant neurobiology provides the means for their resolution. In: Witzany G (ed) Biosemiotics in transdisciplinary context. Proceedings of the gathering in Biosemiotics 6, Salzburg 2006. Umweb, Helsinki

    Google Scholar 

  • Baluška F, Schlicht M, Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopold 96:103–122

    Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2009b) The ‘root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years. Plant Signal Behav 4:1121–1127

    Article  PubMed  Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2010) Root apex transition zone: a signalling – response nexus in the root. Trends Plant Sci 15:402–408

    Article  PubMed  CAS  Google Scholar 

  • Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28:3785–3798

    Article  PubMed  CAS  Google Scholar 

  • Bar M, Avni A (2009) EHD2 inhibits signaling of leucine rich repeat receptor-like proteins. Plant Signal Behav 4:682–684

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW (1995) Gravity perception in plants: a multiplicity of systems derived by evolution? Plant Cell Environ 18:951–962

    Article  PubMed  CAS  Google Scholar 

  • Barlow PW (1996) An introduction to gravity perception in plants and fungi: a multiplicity of mechanisms. Adv Space Res 17:69–72

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Peret B, Baluška F, Benfey P, Bennett M, Forde BG, Gilroy S, Helariutta Y, Hepler PK, Leyser O, Masson PH, Muday GK, Poethig S, Roberts K, Scheres B, Sharp RE, Somerville C (2010) Shootward and rootward: peak terminology for plant polarity. Trends Plant Sci 15:593–594

    Article  PubMed  CAS  Google Scholar 

  • Berghöfer T, Eing C, Flickinger B, Hohenberger P, Wegner LH, Frey W, Nick P (2009) Nanosecond electric pulses trigger actin responses in plant cells. Biochem Biophys Res Commun 387:590–595

    Article  PubMed  CAS  Google Scholar 

  • Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment and a time to theorize. Curr Opin Cell Biol 18:472–481

    Article  PubMed  CAS  Google Scholar 

  • Birtwistle MR, Kholodenko BN (2009) Endocytosis and signalling: a meeting with mathematics. Mol Oncol 3:308–320

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Fasano JM, Gilroy S (1998) Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol 116:213–222

    Article  PubMed  CAS  Google Scholar 

  • Blancaflor EB, Hou GC, Mohamalawari DR (2003) The promotive effect of latrunculin B on maize root gravitropism is concentration dependent. Adv Space Res 31:2215–2220

    Article  PubMed  CAS  Google Scholar 

  • Boudaoud A (2009) An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci 14:467–478

    Article  CAS  Google Scholar 

  • Braun M, Limbach C (2006) Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing. Protoplasma 229:133–142

    Article  PubMed  CAS  Google Scholar 

  • Braybrook SA, Kuhlemeier C (2010) How a plant builds leaves. Plant Cell 22:1006–1018

    Article  PubMed  CAS  Google Scholar 

  • Burg MB (2000) Macromolecular crowding as a cell volume sensor. Cell Physiol Biochem 10:251–256

    Article  PubMed  CAS  Google Scholar 

  • Buss F, Arden SD, Lindsay M, Luzio JP, Kendrick-Jones J (2001) Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J 20:3676–3684

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:45–52

    Article  CAS  Google Scholar 

  • Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60:43–56

    Article  PubMed  CAS  Google Scholar 

  • Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  PubMed  CAS  Google Scholar 

  • Collings DA, White RG, Overall RL (1992) Ionic current changes associated with the gravity-induced bending response in roots of Zea mays L. Plant Physiol 100:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Cote R, Thain JF, Fensom DS (1987) Increase in electrical resistance of plasmodesmata of Chara induced by an applied pressure gradient across nodes. Can J Bot 65:509–511

    Article  Google Scholar 

  • Cueno P, Magri E, Verzola A, Grazi E (1992) Macromolecular crowding is a primary factor in the organization of the cytoskeleton. Biochem J 281:507–512

    Google Scholar 

  • Czapek F (1898) Weitere Beiträge zur Kentniss der geotropischen Reizbewegungen. Jahrb Wiss Bot 32:175–308

    Google Scholar 

  • Dahl KN, Ribeiro AJS, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Darwin F (1899) On geotropism and the localization of the sensitive region. Ann Bot 13:567–574

    Google Scholar 

  • Darwin F (1903) The statolith theory of geotropism. Nature 67:571–572

    Article  Google Scholar 

  • Darwin F (1907) Lectures on the physiology of movement in plants. IV. The localisation of perception. New Phytol 6:35–42

    Article  Google Scholar 

  • Demidchik V, Nichols C, Oliynyk M, Dark A, Glover BJ, Davies JM (2003) Is ATP a signaling agent in plants? Plant Physiol 133:456–461

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Baluška F, Schlicht M, Hlavačka A, Šamaj J, Friml J, Gadella TWJ Jr (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    Article  PubMed  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993a) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    Article  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993b) Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J 3:713–720

    Article  PubMed  CAS  Google Scholar 

  • Ding JP, Badot P-M, Pickard BG (1993) Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel. Aust J Plant Physiol 20:771–778

    Article  PubMed  CAS  Google Scholar 

  • Ditengou FA, Teale WD, Kochersperger P, Flittner KA, Kneuper I, van der Graaff E, Nziengui H, Pinosa F, Li X, Nitschke R, Laux T, Palme K (2008) Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:18818–18823

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  PubMed  CAS  Google Scholar 

  • Drakakaki G, Robert S, Raikhel NV, Hicks GR (2009) Chemical dissection of endosomal pathways. Plant Signal Behav 4:57–62

    Article  PubMed  CAS  Google Scholar 

  • Driss-Ecole D, Jeune B, Prouteau M, Julianus P, Perbal G (2000) Lentil root statoliths reach a stable state in microgravity. Planta 211:396–405

    Article  PubMed  CAS  Google Scholar 

  • Evans ML, Ishikawa H (1997) Cellular specificity of the gravitropic motor response in roots. Planta 203(Suppl 1):S115–S122

    Article  PubMed  CAS  Google Scholar 

  • Ewart AJ (1902) On the physics and physiology of protoplasmic streaming in plants. Clarendon, Oxford

    Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13:907–921

    Article  PubMed  CAS  Google Scholar 

  • Fasano JM, Massa GD, Gilroy S (2002) Ionic signaling in plant responses to gravity and touch. J Plant Growth Regul 21:71–88

    Article  PubMed  CAS  Google Scholar 

  • Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2:325–345

    PubMed  CAS  Google Scholar 

  • Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415–1418

    Article  CAS  Google Scholar 

  • Foresi NP, Laxalt AM, Tonon CV, Casalongue CA, Lamattina L (2007) Extracellular ATP induces nitric oxide production in tomato cell suspensions. Plant Physiol 145:589–592

    Article  PubMed  CAS  Google Scholar 

  • Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci USA 103:3681–3686

    Article  PubMed  CAS  Google Scholar 

  • Gaina V, Svegzdiene D, Rakleviciene D, Koryzniene D, Staneviciene R, Laurinavicius R (2003) Kinetics of amyloplast movement in cress root statocytes under different gravitational loads. Adv Space Res 31:2275–2281

    Google Scholar 

  • Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33

    Article  PubMed  CAS  Google Scholar 

  • Geisler DA, Sampathkumar A, Mutwil M, Persson S (2008) Laying down the bricks: logistic aspects of cell wall biosynthesis. Curr Opin Plant Biol 11:647–652

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A, Ortega JKE (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Robatzek S (2008) Plant receptors go endosomal: a moving view on signal transduction. Plant Physiol 147:1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Golomb L, Abu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3

    Article  PubMed  CAS  Google Scholar 

  • Guikema JA, Hilaire E, Odom WR (1993) Cytoskeleton-amyloplast interactions in sweet clover. Trans KS Acad Sci 96:13–19

    Article  CAS  Google Scholar 

  • Haberlandt G (1900) Über die Perzeption des geotropischen Reizes. Ber Dtsch Bot Ges 18:261–272

    Google Scholar 

  • Haberlandt G (1908) Über die Verteilung der geotropischen Sensibilität in der Wurzel. Jahrb Wiss Bot 45:575–600

    Google Scholar 

  • Hála M, Soukupová H, Synek L, Zárský V (2010) Arabidopsis RAB geranylgeranyl transferase beta-subunit mutant is constitutively photomorphogenic, and has shoot growth and gravitropic defects. Plant J 62:615–627

    Article  PubMed  CAS  Google Scholar 

  • Harrison BR, Masson PH (2008a) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53:380–392

    Article  PubMed  CAS  Google Scholar 

  • Harrison B, Masson PH (2008b) ARG1 and ARL2 form an actin-based gravity-signaling chaperone complex in root statocytes? Plant Signal Behav 3:650–653

    Article  PubMed  Google Scholar 

  • Hasson T (2003) Myosin VI: two distinct roles in endocytosis. J Cell Sci 116:3453–3461

    Article  PubMed  CAS  Google Scholar 

  • Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16:1–11

    Article  PubMed  CAS  Google Scholar 

  • Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse J-M (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734

    Article  PubMed  CAS  Google Scholar 

  • Hause G, Šamaj J, Menzel D, Baluška F (2006) Fine structural analysis of brefeldin A-induced compartment formation after high-pressure freeze fixation of maize root epidermis: compound exocytosis resembling cell plate formation during cytokinesis. Plant Signal Behav 1:134–139

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Takagi S (2003) Ca2+-dependent cessation of cytoplasmic streaming induced by hypertonic treatment in Vallisneria mesophyll cells: possible role of cell wall–plasma membrane adhesion. Plant Cell Physiol 44:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Hou G, Mohamalawari DR, Blancaflor EB (2003) Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. Plant Physiol 131:1360–1373

    Article  PubMed  CAS  Google Scholar 

  • Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S, Blancaflor EB (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39:113–125

    Article  PubMed  CAS  Google Scholar 

  • Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW (2008a) Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol 180:905–914

    Article  PubMed  CAS  Google Scholar 

  • Idone V, Tam C, Andrews NW (2008b) Two-way traffic on the road to plasma membrane repair. Trends Cell Biol 18:552–559

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599

    Article  PubMed  CAS  Google Scholar 

  • Ingber D (1999) How cells (might) sense microgravity. FASEB J 13(Suppl):S3–S15

    PubMed  CAS  Google Scholar 

  • Ingber DE (2003) Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97:163–179

    Article  PubMed  Google Scholar 

  • Ishikawa H, Evans ML (1990a) Gravity-induced changes in intracellular potentials in elongating cortical cells of mung bean roots. Plant Cell Physiol 31:457–462

    PubMed  CAS  Google Scholar 

  • Ishikawa H, Evans ML (1990b) Electrotropism of maize roots. Role of the root cap and relationship to gravitropism. Plant Physiol 94:913–918

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H, Evans ML (1992) Induction of curvature in maize roots by calcium or by thigmostimulation: role of the postmitotic isodiametric growth zone. Plant Physiol 100:762–768

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H, Evans ML (1994) Correlations between changes in electrical parameters and changes in cell elongation rates in gravistimulated roots. Adv Space Res 14:125–133

    Article  PubMed  CAS  Google Scholar 

  • Ivanov R, Gaude T (2009) Endocytosis and endosomal regulation of the S-receptor kinase during the self-incompatibility response in Brassica oleracea. Plant Cell 21:2107–2117

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi A, Yano M, Shimizu H (1989) Development of extracellular electric pattern around Lepidium roots: its possible role in root growth and gravitropism. Protoplasma 148:98–100

    Article  Google Scholar 

  • Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34

    Article  PubMed  CAS  Google Scholar 

  • Johnsson A, Pickard BG (1979) The threshold stimulus for geotropism. Physiol Plant 45:315–319

    Article  Google Scholar 

  • Jouhet J, Gray JC (2009) Interaction of actin and the chloroplast protein import apparatus. J Biol Chem 284:19132–19141

    Article  PubMed  CAS  Google Scholar 

  • Juniper BE (1976) Geotropism. Annu Rev Plant Physiol 27:385–406

    Article  CAS  Google Scholar 

  • Juniper BE, Groves S, Landau-Schachar B, Audus LJ (1966) Root cap and the perception of gravity. Nature 209:93–94

    Article  Google Scholar 

  • Kernan MJ (2007) Mechanotransduction and auditory transduction in Drosophila. Pflugers Arch 454:703–720

    Article  PubMed  CAS  Google Scholar 

  • Kernan M, Cowan D, Zuker C (1994) Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron 12:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Kimbrough JM, Salinas-Mondragon R, Boss WF, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136:2790–2805

    Google Scholar 

  • Kleine-Vehn J, Langowski L, Wisniewska J, Dhonukshe P, Brewer PB, Friml J (2008) Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant 1:1056–1066

    Article  PubMed  CAS  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956

    Article  PubMed  CAS  Google Scholar 

  • Kordyum E, Guikema J (2001) An active role of the amyloplasts and nuclei of root statocytes in graviperception. Adv Space Res 27:951–956

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  PubMed  CAS  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    Article  PubMed  CAS  Google Scholar 

  • Łangowski Ł, Růžička K, Naramoto S, Kleine-Vehn J, Friml J (2010) Trafficking to the outer polar domain defines the root-soil interface. Curr Biol 10:904–908

    Article  CAS  Google Scholar 

  • Laskowski M, Grieneisen VA, Hofhuis H, Hove CA, Hogeweg P, Marée AF, Scheres B (2008) Root system architecture from coupling cell shape to auxin transport. PloS Biol 6:e307

    Article  PubMed  CAS  Google Scholar 

  • Lecuit T (2010) α-Catenin mechanosensing for adherens junctions. Nat Cell Biol 12:522–524

    Article  PubMed  CAS  Google Scholar 

  • Legué V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S (1997) Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol 114:789–800

    Article  PubMed  Google Scholar 

  • Leterrier JF (2001) Water and the cytoskeleton. Cell Mol Biol 47:901–923

    PubMed  CAS  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737

    Article  PubMed  CAS  Google Scholar 

  • Lewis JD, Lazarowitz SG (2009) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci USA 107:2491–2496

    Article  Google Scholar 

  • Lieleg O, Schmoller KM, Claessens MM, Bausch AR (2009) Cytoskeletal polymer networks: viscoelastic properties are determined by the microscopic interaction potential of cross-links. Biophys J 96:4725–4732

    Article  PubMed  CAS  Google Scholar 

  • Limbach C, Hauslage J, Schäfer C, Braun M (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol 139:1030–1040

    Article  PubMed  CAS  Google Scholar 

  • Lindeboom J, Mulder BM, Vos JW, Ketelaar T, Emons AM (2008) Cellulose microfibril deposition: coordinated activity at the plant plasma membrane. J Microsc 231:192–200

    Article  PubMed  CAS  Google Scholar 

  • Liverpool TB (2006) Active gels: where polymer physics meets cytoskeletal dynamics. Philos Trans A Math Phys Eng Sci 364:3335–3355

    Article  CAS  Google Scholar 

  • Lorenzi G, Perbal G (1990) Actin filaments responsible for the location of the nucleus in the lentil statocyte are sensitive to gravity. Biol Cell 68:259–263

    Article  PubMed  CAS  Google Scholar 

  • Luan S (2009) The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    Article  PubMed  CAS  Google Scholar 

  • Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    Article  PubMed  CAS  Google Scholar 

  • Mancuso S, Barlow PW, Volkmann D, Baluška F (2006) Actin turnover-mediated gravity response in maize root apices: gravitropism of decapped roots implicates gravisensing outside of the root cap. Plant Signal Behav 1:52–58

    Article  PubMed  Google Scholar 

  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S, Baluška F, Arecchi FT, Mancuso S (2009) Spatio-temporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci USA 106:4048–4053

    Article  PubMed  CAS  Google Scholar 

  • Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445

    Article  PubMed  Google Scholar 

  • McConnell RE, Tyska MJ (2010) Leveraging the membrane – cytoskeleton interface with myosin-1. Trends Cell Biol 20:418–426

    Article  PubMed  CAS  Google Scholar 

  • Minc N, Burgess D, Chang F (2011) Influence of cell geometry on division-plane positioning. Cell 144:414–426

    Article  PubMed  CAS  Google Scholar 

  • Morey-Holton ER (2003) The impact of gravity on life. In: Rothschild LJ, Lister AM (eds) Evolution on planet Earth: impact of the physical environment. Academic, New York, pp 143–160

    Chapter  Google Scholar 

  • Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61:705–720

    Article  PubMed  CAS  Google Scholar 

  • Morita MT, Tasaka M (2004) Gravity sensing and signaling. Curr Opin Plant Biol 7:712–718

    Article  PubMed  CAS  Google Scholar 

  • Mullen JL, Wolverton C, Ishikawa H, Evans ML (2000) Kinetics of constant gravitropic stimulus responses in Arabidopsis roots using a feedback system. Plant Physiol 123:665–670

    Article  PubMed  CAS  Google Scholar 

  • Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci USA 106:17615–17622

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Ishii T, Hotta T, Mizuno K (2008) Radial microtubule organization by histone H1 on nuclei of cultured tobacco BY-2 cells. J Biol Chem 283:16632–16640

    Article  PubMed  CAS  Google Scholar 

  • Nambiar R, McConnell RE, Tyska MJ (2009) Control of cell membrane tension by myosin-I. Proc Natl Acad Sci USA 106:11972–11977

    Article  PubMed  CAS  Google Scholar 

  • Němec B (1900) Über die Art der Wahrnehmung des Schwerkraftreizes bei den Pflanzen. Ber Dtsch Bot Ges 18:241–245

    Google Scholar 

  • O’Hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ (1993) Signalling via plasmodesmata – the neglected pathway. Sem Cell Biol 4:131–138

    Article  CAS  Google Scholar 

  • Oparka KJ, Prior DAM (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2:741–750

    Article  Google Scholar 

  • Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991

    Article  PubMed  CAS  Google Scholar 

  • Perbal G, Driss-Ecole D, Tewinkel M, Volkmann D (1997) Statocyte polarity and gravisensitivity in seedling roots grown in microgravity. Planta 203(Suppl 1):S57–S62

    Article  PubMed  CAS  Google Scholar 

  • Perbal G, Lefranc A, Jeune B, Driss-Ecole D (2004) Mechanotransduction in root gravity sensing cells. Physiol Plant 120:303–311

    Article  PubMed  CAS  Google Scholar 

  • Perera IY, Heilmann I, Boss WF (1999) Transient and sustained increases in inositol 1,4,5-trisphosphate precede the differential growth response in gravistimulated maize pulvini. Proc Natl Acad Sci USA 96:5838–5843

    Article  PubMed  CAS  Google Scholar 

  • Perera IY, Heilmann I, Chang SC, Boss WF, Kaufman PB (2001) A role for inositol 1,4,5-trisphosphate in gravitropic signaling and the retention of cold-perceived gravistimulation of oat shoot pulvini. Plant Physiol 125:1499–1507

    Article  PubMed  CAS  Google Scholar 

  • Perrin RM, Young LS, Murthy UMN, Harrison BR, Wang Y, Will JL, Masson PH (2005) Gravity signal transduction in primary roots. Ann Bot 96:737–743

    Article  PubMed  CAS  Google Scholar 

  • Peyronnet R, Haswell ES, Barbier-Brygoo H, Frachisse J-M (2008) AtMSL9 and AtMSL10. Sensors of plasma membrane tension in Arabidopsis roots. Plant Signal Behav 3:726–729

    Article  PubMed  Google Scholar 

  • Pfeffer W (1894) Geotropic sensitiveness of the root-tip. Ann Bot 8:317–320

    Google Scholar 

  • Pickard BG (2007) Delivering force and amplifying signals in plant mechanosensing. Curr Top Membr 58:361–392

    Article  CAS  Google Scholar 

  • Pickard BG, Ding JP (1993) The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre? Aust J Plant Physiol 20:439–459

    Article  PubMed  CAS  Google Scholar 

  • Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98:11812–11817

    Article  PubMed  CAS  Google Scholar 

  • Plieth C (2005) Calcium: just another regulator in the machinery of life? Ann Bot 96:1–8

    Article  PubMed  CAS  Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 129:786–796

    Article  PubMed  CAS  Google Scholar 

  • Reid RJ, Overall RL (1992) Intercellular communication in Chara: factors affecting transnodal electrical resistance and solute fluxes. Plant Cell Environ 15:507–517

    Article  Google Scholar 

  • Reinhardt D, Wittwer F, Mandel T, Kuhlemeier C (1998) Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10:1427–1437

    Article  PubMed  CAS  Google Scholar 

  • Roux I, Safieddine S, Nouvian R, Grati M et al (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277–289

    Article  PubMed  CAS  Google Scholar 

  • Roux I, Hosie S, Johnson SL, Bahloul A, Cayet N, Nouaille S, Kros CJ, Petit C, Safieddine S (2009) Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses. Hum Mol Genet 18:4615–4628

    Article  PubMed  CAS  Google Scholar 

  • Ryu J-H, Takagi S, Nagai R (1995) Stationary organization of the actin cytoskeleton in Vallisneria: the role of stable microfilaments at the end walls. J Cell Sci 108:1531–1539

    PubMed  CAS  Google Scholar 

  • Ryu J-H, Mizuno K, Takagi S, Nagai R (1997) Extracellular components implicated in the stationary organization of the actin cytoskeleton in mesophyll cells of Vallisneria. Plant Cell Physiol 38:420–432

    PubMed  CAS  Google Scholar 

  • Sachs J (1892) Beiträge zur Zellentheorie. Energiden und Zellen. Flora 75:57–67

    Google Scholar 

  • Sack FD (1997) Plastids and gravitropic sensing. Planta 203:S63–S68

    Article  PubMed  CAS  Google Scholar 

  • Sack FD, Suyemoto MM, Leopold AC (1986) Amyloplast sedimentation and organelle saltation in living corn columella cells. Am J Bot 73:1692–1698

    Article  PubMed  CAS  Google Scholar 

  • Šamaj J, Baluška F, Hirt H (2004) From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of dynamic cytoskeleton and signalling endosomes. J Exp Bot 55:189–198

    Article  PubMed  CAS  Google Scholar 

  • Šamaj J, Chaffey NJ, Tirlapur U, Jasik J, Volkmann D, Menzel D, Baluška F (2006) Actin and myosin VIII in plasmodesmata cell-cell channels. In: Baluška F, Volkmann D, Barlow PW (eds) Cell-cell channels. Landes Bioscience, Austin, pp 119–134

    Chapter  Google Scholar 

  • Sandhu AP, Randhawa GS, Dhugga KS (2009) Plant cell wall matrix polysaccharide biosynthesis. Mol Plant 2:840–850

    Article  PubMed  CAS  Google Scholar 

  • Sattarzadeh A, Franzen R, Schmelzer E (2008) The Arabidopsis class VIII myosin ATM2 is involved in endocytosis. Cell Motil Cytoskelet 65:457–468

    Article  CAS  Google Scholar 

  • Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluška F, Botella MA (2008) Arabidopsis synaptotagmin-like protein 1 is essential for plasma membrane viability and survival under abiotic stress. Plant Cell 20:3374–3388

    Article  PubMed  CAS  Google Scholar 

  • Schapire AL, Valpuesta V, Botella MA (2009) Plasma membrane repair in plants. Trends Plant Sci 14:645–653

    Article  PubMed  CAS  Google Scholar 

  • Scherp P, Hasenstein KH (2007) Anisotropic viscosity of the Chara (Characeae) rhizoid cytoplasm. Am J Bot 94:1930–1934

    Article  PubMed  Google Scholar 

  • Schmoller KM, Lieleg O, Bausch AR (2009) Structural and viscoelastic properties of actin/filamin networks: cross-linked versus bundled networks. Biophys J 97:83–89

    Article  PubMed  CAS  Google Scholar 

  • Schröter K, Rodriguez-Garcia M, Sievers A (1973) Die Rolle des endoplasmatischen Retikulums bei der Genese der Chara-Statolithen. Protoplasma 76:435–442

    Article  Google Scholar 

  • Schröter K, Läuchli A, Sievers A (1975) Mikroanalytische Identifikation von Bariumsulfat-Kristallen in den Statolithen der Rhizoide von Chara fragilis Desv. Planta 122:213–225

    Article  Google Scholar 

  • Schwarz US, Erdmann T, Bischofs IB (2006) Focal adhesions as mechanosensors: the two-spring model. Biosystems 83:225–232

    Article  PubMed  CAS  Google Scholar 

  • Scita G, Di Fiore PP (2010) The endocytic matrix. Nature 463:464–473

    Article  PubMed  CAS  Google Scholar 

  • Scott BIH (1967) Electric fields in plants. Annu Rev Plant Physiol 18:409–418

    Article  CAS  Google Scholar 

  • Scott AC, Allen NS (1999) Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. Plant Physiol 121:1291–1298

    Article  PubMed  CAS  Google Scholar 

  • Seagull RW, Falconer MM, Weerdenburg CA (1987) Microfilaments: dynamic arrays in higher plant cells. J Cell Biol 104:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Hou NY, Schlicht M, Wan Y, Mancuso S, Baluška F (2008) Aluminium toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bull 53:2480–2487

    Article  CAS  Google Scholar 

  • Shepherd VA (2006) The cytomatrix as a cooperative system of macromolecular and water networks. Curr Top Dev Biol 75:171–223

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T (2001) Electrical perception of “death message” in Chara: involvement of turgor pressure. Plant Cell Physiol 42:366–373

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T (2002) Electrical perception of “death message” in Chara: analysis of rapid component and ionic process. Plant Cell Physiol 43:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T (2003) Studies on mechano-perception in the Characeae: transduction of pressure signals into electrical signals. Plant Cell Physiol 44:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Shimmen T (2005) Studies on mechano-perception in the Characeae: analysis of K+-sensitive depolarization. Plant Cell Physiol 46:1839–1847

    Article  PubMed  CAS  Google Scholar 

  • Siechen S, Yang S, Chiba A, Saif T (2009) Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc Natl Acad Sci USA 106:12611–12616

    Article  PubMed  CAS  Google Scholar 

  • Silady RA, Kato T, Lukowitz W, Sieber P, Tasaka M, Somerville CR (2004) The gravitropism defective 2 mutants of Arabidopsis are deficient in a protein implicated in endocytosis in Caenorhabditis elegans. Plant Physiol 136:3095–3103

    Article  PubMed  CAS  Google Scholar 

  • Silady RA, Ehrhardt DW, Jackson K, Faulkner C, Oparka K, Somerville CR (2008) The GRV2/RME-8 protein of Arabidopsis functions in the late endocytic pathway and is required for vacuolar membrane flow. Plant J 53:29–41

    Article  PubMed  CAS  Google Scholar 

  • Song SJ, Steinebrunner I, Wang X, Stout SC, Roux SJ (2006) Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. Plant Physiol 140:1222–1232

    Article  PubMed  CAS  Google Scholar 

  • Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609–622

    Article  PubMed  CAS  Google Scholar 

  • Stanga JP, Boonsirichai K, Sedbrook JC, Otegui MS, Masson PH (2009a) A role for the TOC complex in Arabidopsis root gravitropism. Plant Physiol 149:1896–1905

    Article  PubMed  CAS  Google Scholar 

  • Stanga J, Baldwin K, Masson PH (2009b) Joining forces: the interface of gravitropism and plastid protein import. Plant Signal Behav 4:933–941

    Article  PubMed  CAS  Google Scholar 

  • Staves MP (1997) Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta 203:S79–S84

    Article  PubMed  CAS  Google Scholar 

  • Staves MP, Wayne R, Leopold AC (1997a) Cytochalasin D does not inhibit gravitropism in roots. Am J Bot 84:1530–1535

    Article  PubMed  CAS  Google Scholar 

  • Staves MP, Wayne R, Leopold AC (1997b) The effect of the external medium on the gravitropic curvature of rice (Oryza sativa, Poaceae) roots. Am J Bot 84:1522–1529

    Article  PubMed  CAS  Google Scholar 

  • Steinhardt RA, Guoqiang B, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263:390–393

    Article  PubMed  CAS  Google Scholar 

  • Stoppin V, Vantard M, Schmit AC, Lambert AM (1994) Isolated plant nuclei nucleate microtubule assembly: the nuclear surface in higher plants has centrosome-like activity. Plant Cell 6:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Švegždienė D, Koryznienė D, Raklevičienė D (2010) Comparison study of gravity-dependent displacement of amyloplasts in statocytes of cress roots and hypocotyls. Microgravity Sci Technol 23:235–241

    Google Scholar 

  • Szymanski DB, Cosgrove DJ (2009) Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol 19:R800–R811

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Takahashi H, Kunieda T, Fuji K, Shimada T, Hara-Nishimura I (2007) Arabidopsis KAM2/GRV2 is required for proper endosome formation and functions in vacuolar sorting and determination of the embryo growth axis. Plant Cell 19:320–332

    Article  PubMed  CAS  Google Scholar 

  • Tang VW (2006) Proteomic and bioinformatic analysis of epithelial tight junction reveals an unexpected cluster of synaptic molecules. Biol Direct 1:37

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Brady SR, Sun Y, Muday GK, Roux SJ (2003) Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport. Plant Physiol 131:147–154

    Article  PubMed  CAS  Google Scholar 

  • Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4:103–106

    Article  PubMed  CAS  Google Scholar 

  • Teis D, Huber LA (2003) The odd couple: signal transduction and endocytosis. Cell Mol Life Sci 60:2020–2033

    Article  PubMed  CAS  Google Scholar 

  • Thompson RF, Langford GM (2002) Myosin superfamily evolutionary history. Anat Rec 268:276–289

    Article  PubMed  CAS  Google Scholar 

  • Trebacz K, Fensom DS (1989) The uptake and transport of 14C in cells of Conocephallum conicum in light. J Exp Bot 40:1089–1092

    Article  CAS  Google Scholar 

  • Trewavas A, Knight M (1994) Mechanical signalling, calcium and plant form. Plant Mol Biol 26:1329–1341

    Article  PubMed  CAS  Google Scholar 

  • Verbelen J-P, De Cnodder T, Le J, Vissenberg K, Baluška F (2006) The root apex of Arabidopsis thaliana consists of four distinct zones of cellular activities: meristematic zone, transition zone, fast elongation zone, and growth terminating zone. Plant Signal Behav 1:296–304

    Article  PubMed  Google Scholar 

  • Viotti C, Bubeck J, Stierhof YD, Krebs M, Langhans M, van den Berg W, van Dongen W, Richter S, Geldner N, Takano J, Jürgens G, de Vries SC, Robinson DG, Schumacher K (2010) Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22:1344–1357

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D (1974) Amyloplasten und Endomembranen: das Geoperzeptionssystem der Primärwurzel. Protoplasma 79:159–183

    Article  Google Scholar 

  • Volkmann D, Sievers A (1979) Graviperception in multicellular organs. In: Haupt W, Feinleib ME (eds) Encyclopedia of Plant Physiology. Vol. 7 - Physiology of Movements, Springer-Verlag, Berlin, pp 573–609

    Google Scholar 

  • Volkmann D, Baluška F (2006) Gravity: one of the driving forces of evolution. Protoplasma 229:143–148

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Baluška F (2008) Plant myosins: do they have roles in gravi- and mechano-sensing? In: Blume YB, Baird WV, Yemets AI, Breviario D (eds) The plant cytoskeleton: a key tool for agro-biotechnology. Springer, Berlin, pp 161–172

    Google Scholar 

  • Volkmann D, Tewinkel M (1996) Gravisensitivity of cress roots: investigations of threshold values under specific conditions of sensor physiology in microgravity. Plant Cell Environ 19:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Buchen B, Hejnowicz Z, Tewinkel M, Sievers A (1991) Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets. Planta 185:153–161

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Mori T, Tirlapur UK, König K, Fujiwara T, Kendrick-Jones J, Baluška F (2003) Unconventional myosins of the plant-specific class VIII: endocytosis, cytokinesis, plasmodesmata – pit-fields, and cell-to-cell coupling. Cell Biol Int 27:289–291

    Article  PubMed  CAS  Google Scholar 

  • Wagner B, Tharmann R, Haase I, Fischer M, Bausch AR (2006) Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties. Proc Natl Acad Sci USA 103:13974–13978

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10:75–82

    Article  PubMed  CAS  Google Scholar 

  • Wawrzecki W, Zagorska-Marek B (2007) Influence of a weak DC electric field on root meristem architecture. Ann Bot 100:791–796

    Article  Google Scholar 

  • Wayne R, Staves MP (1996) A down to earth model of gravisensing, or Newton’s law of gravitation from the apple’s perspective. Physiol Plant 98:917–921

    Article  PubMed  CAS  Google Scholar 

  • Wayne R, Staves MP, Leoplod AC (1990) Gravity-dependent polarity of cytoplasmic streaming in Nitellopsis. Protoplasma 155:43–57

    Article  PubMed  CAS  Google Scholar 

  • Wayne R, Staves MP, Leopold AC (1992) The contribution of the extracellular matrix to gravisensing in characean cells. J Cell Sci 101:611–623

    PubMed  CAS  Google Scholar 

  • Weerasinghe RR, Swanson SJ, Okada SF, Garrett MB, Kim SY, Stacey G, Boucher RC, Gilroy S, Jones AM (2009) Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex. FEBS Lett 583:2521–2526

    Article  PubMed  CAS  Google Scholar 

  • Willmitzer L, Wagner KG (1981) The isolation of nuclei from tissue-cultured plant cells. Exp Cell Res 135:69–77

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek P, Anielska-Mazur A, Gabryś H, Baluška F, Volkmann D (2005) Recruitments of myosin VIII towards plastid surfaces are root cap-specific and provide the evidence for actomyosin involvement in root osmosensing. Funct Plant Biol 32:721–736

    Article  CAS  Google Scholar 

  • Wojtaszek P, Baluška F, Kasprowicz A, Łuczak M, Volkmann D (2007) Domain-specific mechanosensory transmission of osmotic and enzymatic cell wall disturbances to the actin cytoskeleton. Protoplasma 230:217–230

    Article  PubMed  CAS  Google Scholar 

  • Wolverton C, Mullen JL, Aizawa S, Yoshizaki I, Kamigaichi S, Mukai C, Shimazu T, Fukui K, Evans ML, Ishikawa H (1999) Inhibition of root elongation in microgravity by an applied electric field. J Plant Res 112:493–496

    Article  PubMed  CAS  Google Scholar 

  • Wolverton C, Mullen JL, Ishikawa H, Evans ML (2000) Two distinct regions of response drive differential growth in Vigna root electrotropism. Plant Cell Environ 23:1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Wolverton C, Ishikawa H, Evans ML (2002a) The kinetics of root gravitropism: dual motors and sensors. J Plant Growth Regul 21:102–112

    Article  PubMed  CAS  Google Scholar 

  • Wolverton C, Mullen JL, Ishikawa H, Evans ML (2002b) Root gravitropism in response to a signal originating outside of the cap. Planta 215:153–157

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Nelson WJ (2007) Synapses: sites of cell recognition, adhesion, and functional specification. Annu Rev Biochem 76:267–294

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Kiss JZ (2002) Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis. Plant Physiol 128:669–681

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T, Kawamura Y, Minami A, Uemura M (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–3404

    Article  PubMed  CAS  Google Scholar 

  • Yoder TL, Zheng HQ, Todd P, Staehelin LA (2001) Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Physiol 125:1045–1060

    Article  PubMed  CAS  Google Scholar 

  • Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) α-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara T, Iino M (2007) Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol 48:678–688

    Article  PubMed  CAS  Google Scholar 

  • Young LM, Evans ML, Hertel R (1990) Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol 92:792–796

    Article  PubMed  CAS  Google Scholar 

  • Zárský V, Potocký M (2010) Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst. Biochem Soc Trans 38:723–738

    Article  PubMed  CAS  Google Scholar 

  • Zárský V, Cvrcková F, Potocký M, Hála M (2009) Exocytosis and cell polarity in plants – exocyst and recycling domains. New Phytol 183:255–272

    Article  PubMed  CAS  Google Scholar 

  • Zhou EH, Trepat X, Park CY, Lenormand G, Oliver MN, Mijailovich SM, Hardin C, Weitz DA, Butler JP, Fredberg JJ (2009) Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc Natl Acad Sci USA 106:10632–10637

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Baluška .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baluška, F., Volkmann, D. (2011). Mechanical Aspects of Gravity-Controlled Growth, Development and Morphogenesis. In: Wojtaszek, P. (eds) Mechanical Integration of Plant Cells and Plants. Signaling and Communication in Plants, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19091-9_8

Download citation

Publish with us

Policies and ethics