Skip to main content

Generating a Cellular Protuberance: Mechanics of Tip Growth

  • Chapter
  • First Online:
Mechanical Integration of Plant Cells and Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 9))

Abstract

A plant cell grows by expansive deformation of its surface, the cell wall. Global cellular elongation growth and the mechanical principles governing this process are intensively studied, but the generation of cellular protuberances, a fundamental process required for the formation of complex plant cell geometries, remains poorly understood. Pollen, the male gametophyte stage of the flowering plants, is an excellent model system for the investigation of the mechanics of protuberance formation. The initiation of pollen tube growth requires the spatially confined formation of a bulge, followed by the elongation of the forming tube through tip growth. Since turgor is a nonvectorial force, this process must be controlled by the mechanical properties of the cell wall. In the elongating tube, cell wall expansion is confined to the apex of the cell, requiring the tubular region to be stabilized against turgor-induced tensile stress. How this is achieved, and why the pollen tube is so successful in invading other tissues, is elucidated from the point of view of cell mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JR, Barnes WS, Bedinger P (2002) 2,6-Dichlorbenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes. J Plant Physiol 159:61–67

    Article  CAS  Google Scholar 

  • Aouar L, Chebli Y, Geitmann A (2010) Morphogenesis of complex plant cell shapes – the mechanical role of crystalline cellulose in growing pollen tubes. Sex Plant Reprod 23:15–27

    Article  PubMed  Google Scholar 

  • Baskin T (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222

    Article  PubMed  CAS  Google Scholar 

  • Benkert R, Obermeyer G, Bentrup FW (1997) The turgor pressure of growing lily pollen tubes. Protoplasma 198:1–8

    Article  Google Scholar 

  • Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346

    Article  PubMed  CAS  Google Scholar 

  • Cárdenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146:1–11

    Article  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Castells T, Seoane-Camba JA, Suàrez-Cervera M (2003) Intine wall modifications during germination of Zygophyllum fabago (Zygophyllaceae) pollen grains. Can J Bot 81:1267–1277

    Article  Google Scholar 

  • Cresti M, Pacini E, Ciampolini F, Sarfatti G (1977) Germination and early tube development in vitro of Lycopersicum peruvianum pollen: ultrastructural features. Planta 136:239–247

    Article  Google Scholar 

  • Cresti M, Ciampolini F, Mulcahy DLM, Mulcahy G (1985) Ultrastructure of Nicotiana alata pollen, its germination and early tube formation. Am J Bot 72:719–727

    Article  Google Scholar 

  • Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T (2007) Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Prot 6:207–230

    Article  CAS  Google Scholar 

  • Derksen J (1996) Pollen tubes: a model system for plant cell growth. Bot Acta 109:341–345

    CAS  Google Scholar 

  • Derksen J, Li Y-Q, Knuiman B, Geurts H (1999) The wall of Pinus sylvestris L. pollen tubes. Protoplasma 208:26–36

    Article  CAS  Google Scholar 

  • Emons AMC, van Maren N (1987) Helicoidal cell-wall texture in root hairs. Planta 170:145–151

    Article  Google Scholar 

  • Fayant P, Girlanda O, Aubin C-E, Villemure I, Geitmann A (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22:2579–2593

    Google Scholar 

  • Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460

    Article  CAS  Google Scholar 

  • Geitmann A (1997) Growth and formation of the cell wall in pollen tubes of Nicotiana tabacum and Petunia hybrida. PhD thesis, Vol PhD thesis. Hänsel-Hohenhausen, Egelsbach Frankfurt Washington

    Google Scholar 

  • Geitmann A (2010) How to shape a cylinder: pollen tube as a model system for the generation of complex cellular geometry. Sex Plant Reprod 23:63–71

    Article  PubMed  Google Scholar 

  • Geitmann A, Dumais J (2009) Not-so-tip-growth. Plant Signal Behav 4:136–138

    Article  PubMed  Google Scholar 

  • Geitmann A, Ortega JKE (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A, Steer MW (2006) The architecture and properties of the pollen tube cell wall. In: Malhó R (ed) The pollen tube: a cellular and molecular perspective, Plant Cell Monographs, vol 3. Springer, Berlin, pp 177–200

    Google Scholar 

  • Heslop-Harrison J (1979) Aspects of the structure, cytochemistry and germination of the pollen of rye (Secale cereale L.). Ann Bot 44(Suppl):1–47

    Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107:1–78

    Article  Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison J (1992) Germination of monocolpate angiosperm pollen: evolution of actin cytoskeleton and wall during hydration, activation and tube emergence. Ann Bot 69:385–394

    Google Scholar 

  • Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:17–26

    Article  Google Scholar 

  • Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, McCully ME (1975) The use of an optical brightener in the study of plant structure. Stain Technol 50:319–329

    PubMed  CAS  Google Scholar 

  • Koehl MAR, Quillin KJ, Pell A (2000) Mechanical design of fiber-wound hydraulic skeletons: The stiffening and straightening of embryonic notochords. Am Zool 40:28–41

    Article  Google Scholar 

  • Kroeger JH, Zerzour R, Geitmann A (2011) Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS One 6:e18549

    Google Scholar 

  • Lazzaro MD, Donohue JM, Soodavar FM (2003) Disruption of cellulose synthesis by isoxaben causes tip swelling and disorganizes cortical microtubules in elongating conifer pollen tubes. Protoplasma 220:201–207

    Article  PubMed  CAS  Google Scholar 

  • Márquez J, Seoane-Camba JA, Suárez-Cervera M (1997) Allergenic and antigenic proteins released in the apertural sporoderm during the activation process in grass pollen grains. Sex Plant Reprod 10:269–278

    Article  Google Scholar 

  • McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21:3026–3040

    Article  PubMed  CAS  Google Scholar 

  • Messerli MA, Robinson KR (2003) Ionic and osmotic disruption of the lily pollen tube oscillator: testing proposed models. Planta 217:147–157

    PubMed  CAS  Google Scholar 

  • Messerli MA, Creton R, Jaffe LF, Robinson KR (2000) Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth. Dev Biol 222:84–98

    Article  PubMed  CAS  Google Scholar 

  • Michard E, Dias P, Feijó JA (2008) Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and protons using PHluorin and YC3.1CaMelon. Sex Plant Reprod 21:169–181

    Article  CAS  Google Scholar 

  • Noir S, Bräutigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Parre E, Geitmann A (2005a) More than a leak sealant – the physical properties of callose in pollen tubes. Plant Physiol 137:274–286

    Article  PubMed  CAS  Google Scholar 

  • Parre E, Geitmann A (2005b) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Article  PubMed  CAS  Google Scholar 

  • Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, an gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  • Plyushch TA, Willemse MTM, Franssen-Verheijen MAW, Reinders MC (1995) Structural aspects of in vitro pollen tube growth and micropylar penetration in Gasteria verrucosa (Mill.) H. Duval and Lilium longiflorum Thunb. Protoplasma 187:13–21

    Article  Google Scholar 

  • Proseus T, Boyer J (2006) Calcium pectate chemistry controls growth rate of Chara corallina. J Exp Bot 57:3989–4002

    Article  PubMed  CAS  Google Scholar 

  • Proseus T, Boyer J (2007) Tension required for pectate chemistry to control growth in Chara corallina. J Exp Bot 58:4283–4292

    Article  PubMed  CAS  Google Scholar 

  • Rae AL, Harris PJ, Bacic A, Clarke AE (1985) Composition of the cell walls of Nicotiana alata Link et Otto pollen tubes. Planta 166:128–133

    Article  CAS  Google Scholar 

  • Röckel N, Wolf S, Kost B, Rausch T, Greiner S (2008) Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:133–143

    Article  PubMed  Google Scholar 

  • Russell SD, Bhalla PL, Singh MB (2008) Transcriptome-based examination of putative pollen allergens of rice (Oryza sativa ssp. japonica). Mol Plant 1:751–759

    Article  PubMed  CAS  Google Scholar 

  • Sassen MMA (1964) Fine structure of Petunia pollen grain and pollen tube. Acta Bot Neerl 13:175–181

    Google Scholar 

  • Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425

    Article  PubMed  Google Scholar 

  • Sheoran IS, Pedersen EJ, Ross ARS, Sawhney VK (2009) Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta 230:779–793

    Article  PubMed  CAS  Google Scholar 

  • Smirnova AV, Matveyeva NP, Polesskaya OG, Yermakov IP (2009) Generation of reactive oxygen species during pollen grain germination. Russ J Develop Biol 40:345–353

    Google Scholar 

  • Speranza A, Crinelli R, Scoccianti V, Geitmann A (2011) Reactive oxygen species are involved in pollen tube initiation in kiwifruit. Plant Biol (in press)

    Google Scholar 

  • Suarez-Cervera M, Arcalis E, Le Thomas A, Seoane-Camba J (2002) Pectin distribution pattern in the apertural intine of Euphorbia peplus L. (Euphorbiaceae) pollen. Sex Plant Reprod 14:291–298

    Article  Google Scholar 

  • Suen DF, Huang AH (2007) Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction. J Biol Chem 282:625–636

    Article  PubMed  CAS  Google Scholar 

  • Tian G-H, Chen M-H, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91

    Article  PubMed  CAS  Google Scholar 

  • Valdivia ER, Stephenson AG, Durachko DM, Cosgrove D (2009) Class B β-expansins are needed for pollen separation and stigma penetration. Sex Plant Reprod 22:141–152

    Article  PubMed  Google Scholar 

  • Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. TiPS 15:363–369

    Google Scholar 

  • Zerzour R, Kroeger JH, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446

    Article  PubMed  CAS  Google Scholar 

  • Zonia L, Munnik T (2007) Life under pressure: hydrostatic pressure in cell growth and function. Trends Plant Sci 12:90–97

    Article  PubMed  CAS  Google Scholar 

  • Zonia L, Munnik T (2009) Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci 14:318–327

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Geitmann lab is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and the Human Frontier Science Program (HFSP). Thanks to Youssef Chebli and Louise Pelletier for preparing the scanning electron micrographs. Selected text passages are taken from or modified after (Geitmann 2010) with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Geitmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geitmann, A. (2011). Generating a Cellular Protuberance: Mechanics of Tip Growth. In: Wojtaszek, P. (eds) Mechanical Integration of Plant Cells and Plants. Signaling and Communication in Plants, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19091-9_5

Download citation

Publish with us

Policies and ethics