Skip to main content

Intracellular Movements: Integration at the Cellular Level as Reflected in the Organization of Organelle Movements

  • Chapter
  • First Online:
Mechanical Integration of Plant Cells and Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 9))

Abstract

This chapter presents updated information on organelle movements in plant cells, with attention focused on photosynthesizing cells. The first part summarizes current knowledge on cytoskeletal and motor proteins which integrate the intracellular communication and transport phenomena. Next, the relationship between cytoplasmic streaming and organelle motility is discussed, including recent models of hydrodynamic flow in plant cells. Subsequently, organelle movements are characterized, starting from nonphotosynthesizing organelles: Golgi network, peroxisomes, mitochondria and nuclei, followed by the light-controlled redistribution of chloroplasts. Recent evidence pertaining to the mechanisms is presented, with a special focus on the involvement of the cytoskeletal elements/motor proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anielska-Mazur A, Bernaƛ T, Gabryƛ H (2009) In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP: correlation with light-activated chloroplast responses. BMC Plant Biol 9:64

    PubMed  Google Scholar 

  • Arnaud D, DĂ©jardin A, LeplĂ© JC, Lesage-Descauses MC, Pilate G (2007) Genome-wide analysis of LIM gene family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa. DNA Res 14:103–116

    PubMed  CAS  Google Scholar 

  • Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K is required for rapid trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:1098–1108

    PubMed  CAS  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Bettridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on actin/ER network. Plant J 15:441–447

    PubMed  CAS  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    PubMed  CAS  Google Scholar 

  • Britz S (1979) Chloroplast and nuclear migration. Encycl Plant Physiol 7:170–205

    Google Scholar 

  • Burkhardt JK (1998) The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochim Biophys Acta 1404:113–126

    PubMed  CAS  Google Scholar 

  • CĂĄrdenas L, Lovy-Wheeler A, Kunkel JG, Hepler PK (2008) Pollen tube growth oscillations and intracellular calcium levels are reversibly modulated by actin polymerization. Plant Physiol 146:1611–1621

    Google Scholar 

  • Chen H, Bernstein BW, Bamburg JR (2000) Regulating actin-filament dynamics in vivo. Trends Biochem Sci 25:19–23

    PubMed  CAS  Google Scholar 

  • Chen MH, Huang LF, Li HM, Chen YR, Yu SM (2004) Signal peptide-dependent targeting of rice α-amylase and cargo proteins to plastids and extracellular compartments of plant cells. Plant Physiol 135:1367–1377

    PubMed  CAS  Google Scholar 

  • Cheung AY, Duan QH, Costa SS, de Graaf BHJ, Di Stilio VS, Feijo J, Wu HM (2008) The dynamic pollen tube cytoskeleton: live cell studies using actin-binding and microtubule-binding reporter proteins. Mol Plant 1:686–702

    PubMed  CAS  Google Scholar 

  • daSilva LL, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F (2004) Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16:1753–1771

    PubMed  CAS  Google Scholar 

  • De La Cruz EM, Wells AL, Rosenfeld SS, Ostap EM, Sweeney HL (1999) The kinetic mechanism of myosin V. Proc Natl Acad Sci USA 96:13726–13731

    Google Scholar 

  • Dong XJ, Ryu JH, Takagi S, Nagai R (1996) Dynamic changes in the organization of microfilaments associated with the photocontrolled motility of chloroplasts in epidermal cells of Vallisneria. Protoplasma 195:18–24

    CAS  Google Scholar 

  • Dong XJ, Nagai R, Takagi S (1998) Microfilaments anchor chloroplasts along the outer periclinal wall in Vallisneria epidermal cells through cooperation of PFR and photosynthesis. Plant Cell Physiol 39:1299–1306

    CAS  Google Scholar 

  • DorĂ©e M, Pickard A (1980) Release of Ca2+ from intracellular pools stops cytoplasmic streaming in Tradescantia staminal hairs. Experientia 36:1291–1292

    Google Scholar 

  • Esseling-Ozdoba A, Houtman D, Van Lammeren AAM, Eiser E, Emons AMC (2008) Hydrodynamic flow in the cytoplasm of plant cells. J Microsc 231:274–283

    PubMed  CAS  Google Scholar 

  • Forde J, Steer MW (1976) Cytoplasmic streaming in Elodea. Can J Bot 54:2688–2694

    Google Scholar 

  • Gibbon BC, Kovar DR, Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 12:2349–2363

    Google Scholar 

  • Goddard RH, Wick SM, Silflow CD, Snustad DP (1994) Microtubule components of the plant cell cytoskeleton. Plant Physiol 104:1–6

    PubMed  CAS  Google Scholar 

  • Goldstein RE, Tuval I, van de Meent JW (2008) Microfluidics of cytoplasmic streaming and its implications for intracellular transport. Proc Natl Acad Sci USA 105:3663–3667

    PubMed  CAS  Google Scholar 

  • Hardham AR, Gunning BE (1978) Structure of cortical microtubule arrays in plant cells. J Cell Biol 77:14–34

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Igarashi H, Mano S, Nishimura M, Shimmen T, Yokota E (2005) Peroxisomal localization of a myosin XI isoform in Arabidopsis thaliana. Plant Cell Physiol 46:782–789

    PubMed  CAS  Google Scholar 

  • Haupt W (1999) Chloroplast movement: from phenomenology to molecular biology. Prog Bot 60:3–36

    CAS  Google Scholar 

  • Haupt W, Scheuerlein R (1990) Chloroplast movement. Plant Cell Environ 13:595–614

    Google Scholar 

  • Hawes C, Satiat-Jeunemaitre B (2005) The plant Golgi apparatus – going with the flow. Biochim Biophys Acta 1744:93–107

    PubMed  CAS  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    PubMed  CAS  Google Scholar 

  • Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696

    Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    PubMed  CAS  Google Scholar 

  • Ingouff M, Fitz Gerald JN, GuĂ©rin C, Robert H, SĂžrensen MB, Van Damme D, Geelen D, Blanchoin L, Berger F (2005) Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat Cell Biol 4:374–380

    Google Scholar 

  • Islam MdS, Niwa Y, Takagi S (2009) Light dependent intracellular positioning of mitochondria in Arabidopsis thaliana mesophyll cells. Plant Cell Physiol 50:1032–1040

    PubMed  CAS  Google Scholar 

  • Iwabuchi K, Sakai T, Takagi S (2007) Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells. Plant Cell Physiol 48:1291–1298

    PubMed  CAS  Google Scholar 

  • Iwabuchi K, Minamino R, Takagi S (2010) Actin reorganization underlies phototropin-dependent positioning of nuclei in Arabidopsis thaliana leaf cells. Plant Physiol 152:1309–1319

    PubMed  CAS  Google Scholar 

  • Izutani Y, Takagi S, Nagai R (1990) Orientation movements of chloroplasts in Vallisneria epidermal cells: different effects of light at low- and high-fluence rate. Photochem Photobiol 51:105–111

    CAS  Google Scholar 

  • Jarillo JA, Gabryƛ H, Capel J, Alonso JM, Ecker JR, Cashmore AR (2001) Phototropin-related NPL-1 controls chloroplast relocation induced by blue light. Nature 410:952–954

    PubMed  CAS  Google Scholar 

  • Jedd G, Chua N-H (2002) Visualization of peroxisomes in living plant cells reveals acto-myosin-dependent cytoplasmic streaming and peroxisome budding. Plant Cell Physiol 43:384–392

    PubMed  CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347:37–44

    PubMed  CAS  Google Scholar 

  • Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M (2009) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci USA 106:13106–13111

    PubMed  CAS  Google Scholar 

  • Kagawa T, Wada M (1993) Light-dependent nuclear positioning in prothallial cells of Adiantum capillus-veneris. Protoplasma 177:82–85

    Google Scholar 

  • Kamiya N, Kuroda K (1956) Velocity distribution of the protoplasmic streaming in Nitella cells. Bot Mag Tokyo 69:544–554

    Google Scholar 

  • Kao YL, Deavours BE, Phelps KK, Walker RA, Reddy AS (2000) Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by Ca2+/Calmodulin. Biochem Biophys Res Commun 267:201–207

    PubMed  CAS  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    PubMed  CAS  Google Scholar 

  • Kato N, Reynolds D, Brown ML, Boisdore M, Fujikawa Y, Morales A, Meisel Lee A (2008) Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings. Plant Methods 4:1–14

    Google Scholar 

  • Katsuta J, Shibaoka H (1988) The roles of the cytoskeleton and the cell wall in nuclear positioning in tobacco BY-2 cells. Plant Cell Physiol 29:403–413

    CAS  Google Scholar 

  • Katsuta J, Hashiguchi Y, Shibaoka H (1990) The role of the cytoskeleton in positioning of the nucleus in premitotic tobacco BY-2 cells. J Cell Sci 95:413–422

    Google Scholar 

  • Ketelaar T, de Ruijter NC, Emons AM (2003) Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15:285–292

    PubMed  CAS  Google Scholar 

  • Knight AE, Kendrick-Jones J (1993) A myosin-like protein from a higher plant. J Mol Biol 231:148–154

    PubMed  CAS  Google Scholar 

  • Kohno T, Shimmen T (1988) Mechanism of Ca2+ inhibition of cytoplasmic streaming in lily pollen tubes. J Cell Sci 91:501–509

    Google Scholar 

  • Kovar DR, Staiger CJ, Weaver EA, McCurdy DW (2000) AtFim1 is an actin filament crosslinking protein from Arabidopsis thaliana. Plant J 24:625–636

    PubMed  CAS  Google Scholar 

  • Krzeszowiec W, Gabryƛ H (2007) Blue light-induced reorganization of myosins in Arabidopsis thaliana. Plant Signal Behav 2:333–336

    PubMed  Google Scholar 

  • Krzeszowiec W, Rajwa B, Dobrucki J, Gabryƛ H (2007) Actin cytoskeleton in Arabidopsis thaliana under blue and red light. Biol Cell 99:251–260

    PubMed  CAS  Google Scholar 

  • Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22

    PubMed  CAS  Google Scholar 

  • Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363

    Google Scholar 

  • Lee YR, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883

    PubMed  CAS  Google Scholar 

  • Lenartowska M, Michalska A (2008) Actin filament organization and polarity in pollen tubes revealed by myosin II subfragment I decoration. Planta 228:891–896

    PubMed  CAS  Google Scholar 

  • Li JF, NebenfĂŒhr A (2007) Organelle targeting of myosin XI is mediated by two globular tail subdomains with separate cargo binding sites. J Biol Chem 282:20593–20602

    PubMed  CAS  Google Scholar 

  • Liu L, Lee YR, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arbidopsis. Mol Biol Cell 16:811–823

    PubMed  Google Scholar 

  • Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK (2005) Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221:95–104

    PubMed  CAS  Google Scholar 

  • Ma YZ, Yen LF (1989) Actin and myosin in pea tendrils. Plant Physiol 89:586–589

    PubMed  CAS  Google Scholar 

  • Mathur J, Mathur J, HĂŒlskamp M (2002) Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol 128:1031–1045

    PubMed  CAS  Google Scholar 

  • Michelot A, GuĂ©rin C, Huang S, Ingouff M, Richard S, Rodiuc N, Staiger CJ, Blanchoin L (2005) The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell 17:2296–2313

    PubMed  CAS  Google Scholar 

  • NebenfĂŒhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1141

    PubMed  Google Scholar 

  • Nick P (2008) Plant microtubules: development and flexibility. Springer, Berlin

    Google Scholar 

  • Nogales E, Whittaker M, Milligan RA, Downing KH (1999) High-resolution model of the microtubule. Cell 96:79–88

    PubMed  CAS  Google Scholar 

  • Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) Chloroplast unusual positioning 1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815

    PubMed  CAS  Google Scholar 

  • Palevitz BA, Hepler PK (1975) Identification of actin in situ at the ectoplasm-endoplasm interface of Nitella, Microfilament-chloroplast association. J Cell Biol 65:29–38

    PubMed  CAS  Google Scholar 

  • Park YI, Chow WS, Anderson JM (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol 111:867–875

    PubMed  CAS  Google Scholar 

  • Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja VV (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis. Plant Physiol 146:1109–1116

    PubMed  CAS  Google Scholar 

  • Reddy AS, Day IS (2001) Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 7:0024

    Google Scholar 

  • Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M (2007) Microtubule- and actin filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement. Plant Cell Physiol 48:345–361

    PubMed  CAS  Google Scholar 

  • Runions J, Brach T, KĂŒhner S, Hawes C (2006) Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57:43–50

    PubMed  CAS  Google Scholar 

  • Ruthardt N, Gulde N, Spiegel H, Fischer R, Emans N (2005) Four-dimensional imaging of cytoplasmic strand dynamics in tobacco BY-2 cells. Protoplasma 225:205–215

    PubMed  CAS  Google Scholar 

  • Ryu JH, Takagi S, Nagai R (1995) Stationary organization of the actin cytoskeleton in Vallisneria: the role of stable microfilaments at the end walls. J Cell Sci 108:1531–1539

    PubMed  CAS  Google Scholar 

  • Ryu JH, Mizuno K, Takagi S, Nagai R (1997) Extracellular components implicated in the stationary organization of the actin cytoskeleton in mesophyll cells of Vallisneria. Plant Cell Physiol 38:420–432

    PubMed  CAS  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98:6969–6974

    PubMed  CAS  Google Scholar 

  • Sakai Y, Takagi S (2005) Reorganized actin filaments anchor chloroplasts along the anticlinal walls of Vallisneria epidermal cells under high-intensity blue light. Planta 221:823–830

    Google Scholar 

  • Sakurai N, Domoto K, Takagi S (2005) Blue-light-induced reorganization of the actin cytoskeleton and the avoidance response of chloroplasts in epidermal cells of Vallisneria gigantea. Planta 221:66–74

    PubMed  CAS  Google Scholar 

  • Sato Y, Wada M, Kadota A (2001) Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci 114:269–279

    PubMed  CAS  Google Scholar 

  • Shimmen T (2007) The sliding theory of cytoplasmic streaming: fifty years of progress. J Plant Res 120:31–43

    PubMed  CAS  Google Scholar 

  • Sowman BN, Kovar DR, Shevchenko G, Franklin-Tong VE, Staiger CJ (2002) Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell 14:2613–2626

    Google Scholar 

  • Staehelin AL, Kang BH (2008) Nanoscale architecture of endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography. Plant Physiol 147:1454–1468

    PubMed  CAS  Google Scholar 

  • Staiger CJ, Hussey PJ (2004) Actin and actin-modulating proteins. In: Hussey PJ (ed) The plant cytoskeleton in cell differentiation and development. Blackwell, London, pp 32–80

    Google Scholar 

  • Staiger CJ, Schliwa M (1987) Actin localization and function in higher plants. Protoplasma 41:1–12

    Google Scholar 

  • Staiger CJ, Sheahan MB, Khurana P, Wang X, McCurdy DW, Blanchoin L (2009) Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J Cell Biol 184:269–280

    PubMed  CAS  Google Scholar 

  • Su H, Wang T, Dong H, Ren H (2007) The Villin/Gelsolin/Fragmin superfamily proteins in plants. J Integr Plant Biol 49:1183–1191

    CAS  Google Scholar 

  • Sugi H, Chaen S (2003) Force-velocity relationships in actin-myosin interactions causing cytoplasmic streaming in algal cells. J Exp Biol 206:1971–1976

    PubMed  CAS  Google Scholar 

  • Sztatelman O, Waloszek A, Banaƛ AKB, Gabryƛ H (2010) Photoprotective function of chloroplast avoidance movement: In vivo chlorophyll fluorescence study. J Plant Physiol 167:709–716

    PubMed  Google Scholar 

  • Takagi S (1997) Photoregulation of cytoplasmic streaming: cell biological dissection of signal transduction pathway. J Plant Res 110:299–303

    Google Scholar 

  • Takagi S, Nagai R (1985) Light-controlled cytoplasmic streaming in Vallisneria mesophyll cells. Plant Cell Physiol 26:941–951

    CAS  Google Scholar 

  • Takagi S, Kong SG, Mineyuki Y, Furuya M (2003) Regulation of actin-dependent cytoplasmic motility by type II phytochrome occurs within seconds in Vallisneria gigantea epidermal cells. Plant Cell 15:331–345

    PubMed  CAS  Google Scholar 

  • Takemiya A, Inoue S, Doi M, Kinoshita T, Shimazaki K (2005) Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17:1120–1127

    PubMed  CAS  Google Scholar 

  • Thomas C, Dieterle M, Gatti S, Hoffmann C, Moreau F, Papuga J, Steinmetz A (2008) Actin bundling via LIM domains. Plant Signal Behav 3:320–321

    PubMed  Google Scholar 

  • Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A (2009) Actin bundling in plants. Cell Motil Cytoskelet 66:940–957

    CAS  Google Scholar 

  • Tominaga M, Kojima H, Yokota E, Orii H, Nakamori R, Katayama E, Anson M, Shimmen T, Oiwa K (2003) Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J 22:1263–1272

    PubMed  CAS  Google Scholar 

  • Trojan A, Gabryƛ H (1996) Chloroplast distribution in Arabidopsis thaliana depends on light conditions during growth. Plant Physiol 111:419–425

    PubMed  CAS  Google Scholar 

  • Vahey M, Titus M, Trautwein R, Scordilis S (1982) Tomato actin and myosin: contractile proteins from a higher plant. Cell Motil 2:131–147

    CAS  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    PubMed  CAS  Google Scholar 

  • Vale RD, Fletterick RJ (1997) The design plan of kinesin motors. Annu Rev Cell Dev Biol 13:745–777

    PubMed  CAS  Google Scholar 

  • van de Meent JW, Tuval I, Goldstein RE (2008) Nature’s microfluidic transporter: rotational cytoplasmic streaming at high Peclet numbers. Phys Rev Lett 101:178102

    PubMed  Google Scholar 

  • Van Gestel K, Köhler RH, Verbelen J-P (2002) Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot 53:659–667

    PubMed  Google Scholar 

  • Verchot-Lubicz J, Goldstein RE (2009) Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma 240:99–107

    PubMed  Google Scholar 

  • Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N et al (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1124–1131

    CAS  Google Scholar 

  • Voigt B, Timmers ACJ, Samaj J, Muller J, Baluska F, Menzel D (2005) GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur J Cell Biol 84:595–608

    PubMed  CAS  Google Scholar 

  • Wada M, Suetsugu N (2004) Plant organelle positioning. Curr Opin Plant Biol 7:626–631

    PubMed  CAS  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    PubMed  CAS  Google Scholar 

  • Wang Z, Pesacreta TC (2004) A subclass of myosin XI is associated with mitochondria, plastids, and the molecular chaperone subunit TCP-1alpha in maize. Cell Motil Cytoskelet 57:218–232

    CAS  Google Scholar 

  • Wang HY, Yu Y, Chen ZL, Xia GX (2005) Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells. Characterization of in vivo functions of a cotton profilin gene. Planta 222:594–603

    PubMed  CAS  Google Scholar 

  • Wang HJ, Wan AR, Jauh GY (2008) An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. Plant Physiol 147:1619–1636

    PubMed  CAS  Google Scholar 

  • Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722

    PubMed  CAS  Google Scholar 

  • Williamson RE (1974) Actin in the alga Chara corallina. Nature 248:801–802

    PubMed  CAS  Google Scholar 

  • Williamson RE (1992) Cytoplasmic streaming in characean algae: mechanism, regulation by Ca2+, and organization. In: Melkonian M (ed) Algal cell motility. Chapman and Hall, New York, pp 73–97

    Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296:647–651

    PubMed  CAS  Google Scholar 

  • Woehlke G, Schliwa M (2000) Directional motility of kinesin motor proteins. Biochim Biophys Acta 1496:117–1127

    Google Scholar 

  • Wojtaszek P, Anielska-Mazur A, Gabryƛ H, BaluĆĄka F, Volkmann D (2005) Recruitment of myosin VIII towards plastid surfaces is root cap-specific and provides the evidence for actomyosin involvement in root osmosensing. Funct Plant Biol 32:721–736

    CAS  Google Scholar 

  • Woods CM, Polito VS, Reid MS (1984) Response to chilling stress in plant cells II. Redistribution of intracellular calcium. Protoplasma 121:17–24

    CAS  Google Scholar 

  • Yang Yd, Elamawi R, Bubeck J, Peperkok R, Ritzenthaler C, Robinson DG (2005) Dynamics of COPII vesicles and the Golgi apparatus in cultured Nicotiana tabacum BY-2 cells provides evidence for transient association of Golgi stacks with endoplasmic reticulum exit sites. Plant Cell 17:1513–1531

    PubMed  CAS  Google Scholar 

  • Zheng M, Beck M, MĂŒller J, Chen T, Wang X, Wang F, Wang Q, Wang Y, BaluĆĄka F, Logan DC, Ć amaj J, Lin J (2009) Actin turnover is required for myosin-dependent mitochondrial movements in Arabidopsis root hairs. PloS ONE 4:e5961

    PubMed  Google Scholar 

  • Zurzycki J (1955) Chloroplast arrangements as a factor in photosynthesis. Acta Soc Bot Pol 24:27–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halina Gabryƛ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krzeszowiec, W., Gabryƛ, H. (2011). Intracellular Movements: Integration at the Cellular Level as Reflected in the Organization of Organelle Movements. In: Wojtaszek, P. (eds) Mechanical Integration of Plant Cells and Plants. Signaling and Communication in Plants, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19091-9_4

Download citation

Publish with us

Policies and ethics