Skip to main content

Microbes: A New Frontier in Tropical Chemical Biology

  • Chapter
  • First Online:
Chemical Biology of the Tropics

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 8))

  • 806 Accesses

Abstract

Upon his first encounter with a neotropical rainforest, Alexander von Humboldt provided this description … the treetops, hung about with lianas, and crowned with great bushes of flowers, spread out like a great carpet, the dark green of which seemed to gleam in contrast to the light…. But more beautiful still than all the wonders individually is the impression conveyed by the whole of this vigorous, luxuriant and yet light, cheering and mild nature in its entirety (Kritcher 1999). Indeed, the first Europeans to encounter these forests must have been agape with wonder at the massive buttressed strangler figs, kapoks, and Brazil nut trees adorned with winding, snakelike lianas. While this diversity is easily noted and appreciated, an even greater wealth of organisms dominated by fungi, bacteria, algae, and protozoa remains largely unexplored. These organisms collectively referred to as microbes make up more than 50% of the earth’s biomass and as the oldest life forms on our planet have evolved an incredible array of diversity suitable for survival in every habitat imaginable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuoka H, Hayashi H (2002) Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol Plant-Microbe Interact 15:334–340

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96:3404–3411

    Article  PubMed  CAS  Google Scholar 

  • Barnes I, Becker KH, Patroescu I (1994) The tropospheric oxidation of dimethyl sulfide: a new source of carbonyl sulfide. Geophys Res Lett 21:2389–2392

    Article  CAS  Google Scholar 

  • Blum LA (1988) Role of surface speciation in the low-temperature dissolution of minerals. Nature 331:431–433

    Article  CAS  Google Scholar 

  • Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487

    Article  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  PubMed  CAS  Google Scholar 

  • Broz AK, Manter DK, Vivanco JM (2007) Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa. ISME J 1:763–765

    Article  PubMed  CAS  Google Scholar 

  • Butterbach-Bahl K, Stange F, Papen H, Li C (2001) Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. J Geophys Res 106:34155–34166

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Kesik M, Miehle P, Papen H, Li C (2004) Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant Soil 260:311–329

    Article  CAS  Google Scholar 

  • Castro-sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    Article  PubMed  CAS  Google Scholar 

  • Chan ASK, Parkin TB (2001) Methane oxidation and production activity in soils from natural and agricultural ecosystems. J Environ Qual 30:1896–1903

    Article  PubMed  CAS  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of Witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  PubMed  CAS  Google Scholar 

  • Doff Sotta E, Meir P, Malhi Y, Donato Nobre A, Hodnett M, Grace J (2004) Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biol 10:601–617

    Article  Google Scholar 

  • Domenech J, Ramos S, Probanza A, Lucas G, Gutierrez M (2007) Elicitation of systemic resistance and growth promotion of Arabidopsis thaliana by PGPRs from Nicotiana glauca: a study of the putative induction pathway. Plant Soil 290:43–50

    Article  CAS  Google Scholar 

  • Dong Y-H, Xu J-L, Li X-Z, Zhang L-H (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531

    Article  PubMed  CAS  Google Scholar 

  • Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La du BN (2005) Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 46:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Edwards R, Rodriguez-brito B, Wegley L, Haynes M, Breitbart M, Peterson D, Saar M, Alexander S, Alexander EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57

    Article  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka S, Tsuruta H, Murdiyarso D (2002) An intensive field study on CO2, CH4 and N2O emissions and soil properties at four land-use types in Sumatra, Indonesia. Global Biogeochem Cycles 16:1049

    Article  Google Scholar 

  • Keller M, Kaplan WA, Wofsy SC (1986) Emissions of N2O, CH4 and CO2 from tropical forest soils. J Geophys Res 91:11791–11802

    Article  CAS  Google Scholar 

  • Kelly EF, Chadwick OA, Hilinski TE (1998) The effect of plants on mineral weathering. Biogeochemistry 42:21–53

    Article  Google Scholar 

  • Kesselmeier J, Teusch N, Kuhn U (1999) Controlling variables for the uptake of atmospheric carbonyl sulfide (COS) by soil. J Geophys Res 104:11577–11584

    Article  CAS  Google Scholar 

  • Khalil MI, Baggs EM (2005) CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol Biochem 37:1785–1794

    Article  CAS  Google Scholar 

  • Kiese R, Butterbach-Bahl K (2002) N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biol Biochem 34:975–987

    Article  CAS  Google Scholar 

  • Kiese R, Hewett B, Graham A, Butterbach-Bahl K (2003) Seasonal variability of N2O emissions and CH4 uptake by tropical rainforest soils of Queensland, Australia. Global Biogeochem Cycles 17:1043

    Article  Google Scholar 

  • Kiese R, Li CS, Hilbert DW, Papen H, Butterbach-Bahl K (2005) Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in the Wet Tropics of Australia. Global Change Biol 11:128–144

    Article  Google Scholar 

  • Kritcher J (1999) A neotropical companion: an introduction to the animals, plants, and ecosystems of the new world tropics. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Kuhn U, Kesselmeier J (2000) Environmental parameters controlling the uptake of carbonyl sulfide by lichens. J Geophys Res 105:26783–26792

    Article  CAS  Google Scholar 

  • la Scala N, Marques J, Pereira GT, Corá JE (2000) Carbon dioxide emission related to chemical properties of a tropical bare soil. Soil Biol Biochem 32:1469–1473

    Article  CAS  Google Scholar 

  • Lacis A, Hansen J, Sato M (1992) Climate forcing by stratospheric aerosols. Geophys Res Lett 19:1607–1610

    Article  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    Article  PubMed  CAS  Google Scholar 

  • Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127

    PubMed  CAS  Google Scholar 

  • Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425

    Article  PubMed  CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  • Poth M, Focht DD (1985) 15N Kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl Environ Microbiol 49:1134–1141

    PubMed  CAS  Google Scholar 

  • Poulin M-JE, Simard J, Catford J-G, Librie F, Pichão Y (1997) Response of symbiotic endomycorrhizal fungi to estrogens and antiestrogens. Mol Plant Microbe Interact 10:481–487

    Article  CAS  Google Scholar 

  • Raich JW (1998) Aboveground productivity and soil respiration in three Hawaiian rain forests. For Ecol Manage 107:309–318

    Article  Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler H-P (2006) Auxofuran, a novel metabolite that stimulates the growth of Fly Agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  PubMed  CAS  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  • Roesch L, Camargo F, Bento F, Triplett E (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104

    Article  CAS  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1–12

    Google Scholar 

  • Ronaghi M, Uhlen M, Nyren P (1998) DNA sequencing: a sequencing method based on real-time pyrophosphate. Science 281:363–365

    Article  PubMed  CAS  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791

    Article  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA 103:12115–12120

    Article  PubMed  CAS  Google Scholar 

  • Stahl DA, Lane DJ, Olsen GJ, Pace NR (1985) Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl Environ Microbiol 49:1379–1384

    PubMed  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    Article  PubMed  CAS  Google Scholar 

  • Topp E, Pattey E (1997) Soil as sources and sinks for atmospheric methane. Can J Soil Sci 77:12

    Article  Google Scholar 

  • Tsai SM, Phillips DA (1991) Flavonoids released naturally from Alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488

    PubMed  CAS  Google Scholar 

  • van Diest H, Kesselmeier J (2008) Soil atmosphere exchange of carbonyl sulfide (COS) regulated by diffusivity depending on water-filled pore space. Biogeosciences 5:475–483

    Article  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  PubMed  CAS  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, Mchardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  PubMed  CAS  Google Scholar 

  • Welch SA, Ullman WJ (1993) The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim Cosmochim Acta 57(12):2725–2736

    Article  CAS  Google Scholar 

  • Werner C, Zheng X, Tang J, Xie B, Liu C, Kiese R, Butterbach-Bahl K (2006) N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant Soil 289:335–353

    Article  CAS  Google Scholar 

  • White AF, Brantley SL (1995) Chemical weathering rates of silicate minerals; an overview. Rev Mineral Geochem 31:1–22

    CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Mol Biol Rev 51:221–271

    CAS  Google Scholar 

  • Xavier KB, Bassler BL (2005) Interference with AI-2-mediated bacterial cell-cell communication. Nature 437:750–753

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama K, Takeuchi Y, Yokota T (2001) Production of clover broomrape seed germination stimulants by red clover root requires nitrate but is inhibited by phosphate and ammonium. Physiol Plant 112:25–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany Weir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weir, T., Manter, D., Kofer, W. (2011). Microbes: A New Frontier in Tropical Chemical Biology. In: Vivanco, J., Weir, T. (eds) Chemical Biology of the Tropics. Signaling and Communication in Plants, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19080-3_5

Download citation

Publish with us

Policies and ethics