Skip to main content

Suspended-Load Transport

  • Chapter
  • First Online:
Fluvial Hydrodynamics

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

The mode of sediment transport where the sediment particles are surrounded by the fluid over an appreciably long period of time is known as suspended-load transport. This chapter introduces basic concepts of sediment suspension and formulations to predict the suspended-load transport rate. The introduction of advection–diffusion model made a considerable progress in deriving the distribution of sediment concentration in sediment-laden flows. Diffusion in turbulent flow results in exchange of momentum and suspended sediment particles between layers of the flow. When the terminal fall velocity of sediment is slow enough, the sediment particles go in suspension. The suspended-load transport rate is readily computed from the known vertical distributions of sediment concentration and flow velocity. Also, based on the energy concept, gravitational theory was developed to determine the distribution of suspended sediment particles. The work done per unit time of a unit volume of fluid and suspended sediment mixture is to transfer from a layer to another layer of the flow. The conservation of energy is preserved separately in the fluid and sediment phases by balancing the energy supplied and the energy dissipated. The effects of suspended load on velocity distribution, von Kármán constant, turbulence characteristics are also discussed in details. Further, the findings on the response of turbulent bursting to sediment suspension are detailed. The computation of suspended-load transport is exemplified through worked out problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technically, convection means a transport governed by diffusion together with advection. Diffusion results in mixing or mass transport mechanism of a substance without requiring bulk motion, while advection is the transport by a fluid due to the bulk motion of fluid.

  2. 2.

    The iterative method is as follows:

    Step 1: To initiate the computation, calculate C| i=0 and \( {\bar{u}}|_{i = 0} \) from the Rouse equation (Eq. 6.27) and the logarithmic law (Eq. 4.27), respectively.

    Step 2: The values of C| i=0 and \( {\bar{u}}|_{i = 0} \) obtained in Step 1 are used in Eqs. (6.88) and (6.91) with stratification effects, as given by Eq. (6.87) that is introduced to Eqs. (6.88) and (6.91).

    Step 3: Continue the iterations for C| i=i and \( {\bar{u}}|_{i = i} \), until the solutions for C and \( \bar{u} \) converge to a minimum error (say 0.1 %).

  3. 3.

    For Lane and Kalinske’s method, they did not clearly define the reference level and its corresponding concentration. It is therefore suggested that one can consider reference level at 0.05 times the flow depth. However, the concentration at that level may be assumed as 10−3, for solving this problem. Essentially, in practice, these two parameters are to be obtained from the measured concentration distributions.

References

  • Akiyama J, Fukushima Y (1986) Entrainment of noncohesive sediment into suspension. In: Wang SY, Shen HW, Ding LZ (eds) Proceedings of the third symposium on river sedimentation. University of Mississippi, Mississippi, pp 804–813

    Google Scholar 

  • Antsyferov SM, Kos’yan RD (1980) Sediment suspended in stream flow. J Hydraul Div 106(2):313–330

    Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc London A 255(1160):49–63

    Google Scholar 

  • Bagnold RA (1966) An approach to the sediment transport problem from general physics. Geological survey professional paper 422-I, Washington, DC

    Google Scholar 

  • Barenblatt GI (1955) On the motions of suspended particles in a turbulent flow occupying a half-space or a plane open channel of finite depth. Prikladnaya Matematika i Mekhanika 19(1):61–88 (in Russian)

    Google Scholar 

  • Barenblatt GN (1956) The suspended sediment movement in turbulent flow. Water Conservancy Press, Beijing

    Google Scholar 

  • Bijker EW (1971) Longshore transport computations. J Waterways Harbors Coast Eng Div 97(4):687–701

    Google Scholar 

  • Bose SK (2009) Numeric computing in Fortran. Narosa, New Delhi

    Google Scholar 

  • Bose SK, Dey S (2009a) Reynolds averaged theory of turbulent shear flow over undulating beds and formation of sand waves. Phys Rev E 80:036304

    Google Scholar 

  • Bose SK, Dey S (2009b) Suspended-load of sediment in flow on erodible beds. Int J Sediment Res 24(3):315–324

    Google Scholar 

  • Bose SK, Dey S (2010) Universal probability distributions of turbulence in open channel flows. J Hydraul Res 48(3):388–394

    Google Scholar 

  • Bose SK, Dey S (2013) Sediment entrainment probability and threshold of sediment suspension: exponential-based approach. J Hydraul Eng 139(10):1099–1106

    Google Scholar 

  • Breugem A (2012) Transport of suspended particles in turbulent open channel flows. PhD thesis, Delft University of Technology, Meppel

    Google Scholar 

  • Brooks NH (1954) Laboratory studies of the mechanics of streams flowing over a movable bed of fine sand. Doctoral thesis, California Institute of Technology, Pasadena

    Google Scholar 

  • Brooks NH (1963) Calculation of suspended load discharge from velocity concentration parameters. In: Proceedings of the federal interagency sediment conference, United States Department of Agriculture, pp 229–237

    Google Scholar 

  • Brown GL (2008) Approximate profile of nonequilibrium suspended sediment. J Hydraul Eng 134(7):1010–1014

    Google Scholar 

  • Brush LM, Ho HW, Singamsetti SR (1962) A study of sediment in suspension. Publication number 59, International Association for the Science of Hydraulics, IASH Commission of Land Erosion, Bari

    Google Scholar 

  • Castro-Orgaz O, Giráldez JV, Mateos L, Dey S (2012) Is the von Kármán constant affected by sediment suspension? J Geophys Res 117(F04002). doi:10.1029/2011JF002211

  • Celik I, Rodi W (1984) A deposition entrainment model for suspended sediment transport. Report SFB 210/T/6, University of Karlsruhe, Karlsruhe

    Google Scholar 

  • Celik I, Rodi W (1991) Suspended sediment-transport capacity for open channel flow. J Hydraul Eng 117(2):191–204

    Google Scholar 

  • Cellino M, Graf WH (1999) Sediment-laden flow in open-channels under noncapacity and capacity conditions. J Hydraul Eng 125(5):455–462

    Google Scholar 

  • Cellino M, Lemmin U (2004) Influence of coherent flow structures on the dynamics of suspended sediment transport in open-channel flow. J Hydraul Eng 130(11):1077–1088

    Google Scholar 

  • Chang FM, Simons DB, Richardson EV (1965) Total bed-material discharge in alluvial channels. Paper 1498-I, United States Geological Survey Water Supply, Washington, DC

    Google Scholar 

  • Chang HH (1988) Fluvial processes in river engineering. Wiley, New York

    Google Scholar 

  • Cheng KJ (1985) An integrated suspended load equation for non-equilibrium transport of non-uniform sediment. J Hydrol 79(3–4):359–364

    Google Scholar 

  • Cheng N-S (1997) Simplified settling velocity formula for sediment particle. J Hydraul Eng 123(2):149–152

    Google Scholar 

  • Cheng N-S, Chiew Y-M (1998) Pickup probability for sediment entrainment. J Hydraul Eng 124(2):232–235

    Google Scholar 

  • Cheng N-S, Chiew Y-M (1999) Analysis of initiation of sediment suspension from bed load. J Hydraul Eng 125(8):855–861

    Google Scholar 

  • Chien N (1954) The present status of research on sediment transport. Proc Am Soc Civ Eng 80:565-1–565-33

    Google Scholar 

  • Cioffi F, Gallerano F (1991) Velocity and concentration profiles of solid particles in a channel with movable and erodible bed. J Hydraul Res 29(3):387–401

    Google Scholar 

  • Coleman NL (1970) Flume studies of the sediment transfer coefficient. Water Resour Res 6(3):801–809

    Google Scholar 

  • Coleman NL (1981) Velocity profiles with suspended sediment. J Hydraul Res 19(3):211–227

    Google Scholar 

  • Coleman NL (1986) Effects of suspended sediment on the open-channel velocity distribution. Water Resour Res 22(10):1377–1384

    Google Scholar 

  • Dey S (1999) Sediment threshold. Appl Math Model 23(5):399–417

    Google Scholar 

  • Dey S, Das R, Gaudio R, Bose SK (2012) Turbulence in mobile-bed streams. Acta Geophys 60(6):1547–1588

    Google Scholar 

  • Dey S, Dey Sarker HK, Debnath K (1999) Sediment threshold under stream flow on horizontal and sloping beds. J Eng Mech 125(5):545–553

    Google Scholar 

  • Diplas P, Parker G (1992) Deposition and removal of fines in gravel bed streams. In: Hey RD, Thorne CR, Billi P (eds) Dynamics of gravel bed rivers. Wiley, New York, pp 313–329

    Google Scholar 

  • du Boys MP (1879) Le rhone et les rivieres a lit affouillable. Annales des Ponts et Chaussés 18(5):141–195

    Google Scholar 

  • Einstein HA (1950) The bed-load function for sediment transportation in open channel flows. Technical bulletin number 1026, United States Department of Agriculture, Soil Conservation Service, Washington, DC

    Google Scholar 

  • Einstein HA, Anderson AG, Johnson JW (1940) A distinction between bed-load and suspended load in natural streams. Trans Am Geophys Union 21(2):628–633

    Google Scholar 

  • Einstein HA, Chien N (1953a) Transport of sediment mixtures with large range of grain sizes. Missouri River Division series number 2, Institute of Engineering Research, University of California, Berkeley, California

    Google Scholar 

  • Einstein HA, Chien N (1953b) Can the rate of wash load be predicted from the bed load function? Trans Am Geophys Union 34(6):876–882

    Google Scholar 

  • Einstein HA, Chien N (1955) Effects of heavy sediment concentration near the bed on the velocity and sediment distribution. Institute of Engineering Research, Report number 8, University of California, Berkeley, California

    Google Scholar 

  • Elata C, Ippen AT (1961) The dynamics of open channel flow with suspensions of neutrally buoyant particles. Technical report number 45, Massachusetts Institute of Technology, Boston

    Google Scholar 

  • Engelund F, Fredsøe J (1976) A sediment transport model for straight alluvial channels. Nord Hydrol 7(5):293–306

    Google Scholar 

  • Engelund F, Fredsøe J (1982) Hydraulic theory of alluvial rivers. In: Chow VT (ed) Advances in hydrosciences, vol 13. Academic Press, San Diego, California, pp 187–215

    Google Scholar 

  • Exner FM (1925) Über die wechselwirkung zwischen wasser und geschiebe in flüssen. Sitzungsberichte der Akademie der Wissenschaften 134(2a):165–203

    Google Scholar 

  • Fredsøe J, Deigaard R (1992) Mechanics of coastal sediment transport. World Scientific, Singapore

    Google Scholar 

  • Fujita M, Mizuyama T (2000) A diffusion model for suspended sediment in mountain streams. In: Proceedings of the twelfth congress of the Asia Pacific Division of the International Association of Hydraulic Engineering and Research, Bangkok, pp 255–264

    Google Scholar 

  • García MH (2008) Sediment transport and morphodynamics. In: García MH (ed) Sedimentation engineering: processes, measurements, modeling, and practice. Manuals and reports on engineering practice number 110, American Society of Civil Engineers, Reston, pp 21–163

    Google Scholar 

  • García MH, Parker G (1991) Entrainment of bed sediment into suspension. J Hydraul Eng 117(4):414–434

    Google Scholar 

  • García MH, Niño Y, López F (1997) Coherent flow structures in open channels. Wiley, New York

    Google Scholar 

  • Gaudio R, Dey S (2012) Evidence of non-universality of von Kármán’s κ. In: Rowinski P (ed) Experimental and computational solutions of hydraulic problems. Springer, Heidelberg, pp 71–83

    Google Scholar 

  • Gaudio R, Miglio A, Dey S (2010) Non-universality of von Kármán’s κ in fluvial streams. J Hydraul Res 48(5):658–663

    Google Scholar 

  • Grass AJ (1971) Structural features of turbulent flow over smooth and rough boundaries. J Fluid Mech 50:233–255

    Google Scholar 

  • Grass AJ, Stuart RJ, Mansour-Tehrani M (1993) Common vertical structure of turbulent flows over smooth and rough boundaries. Am Inst Aeronaut Astronaut J 31(5):837–847

    Google Scholar 

  • Guo J (2002) Logarithmic matching and its applications in computational hydraulics and sediment transport. J Hydraul Res 40(5):555–565

    Google Scholar 

  • Guo J, Julien PY (2001) Turbulent velocity profiles in sediment-laden flows. J Hydraul Res 39(1):11–23

    Google Scholar 

  • Guo J, Julien PY (2004) Efficient algorithm for computing Einstein integrals. J Hydraul Eng 130(12):1198–1201

    Google Scholar 

  • Guo J, Wood WL (1995) Fine suspended sediment transport rates. J Hydraul Eng 121(12):919–922

    Google Scholar 

  • Gust G (1984) Discussion of ‘Velocity profile with suspended sediment’. J Hydraul Res 22(4):263–289

    Google Scholar 

  • Hino M (1963) Turbulent flow with suspended particles. J Hydraul Div 89(4):161–185

    Google Scholar 

  • Hjelmfelt A, Lenau C (1970) Nonequilibrium transport of suspended sediment. J Hydraul Div 96(7):1567–1586

    Google Scholar 

  • Hunt JN (1954) The turbulent transport of suspended sediment in open channels. Proc R Soc London A 224(1158):322–335

    Google Scholar 

  • Hurther D, Lemmin U (2003) Turbulent particle flux and momentum flux statistics in suspension flow. Water Resour Res 39(5):1139. doi:10.1029/2001WR001113

    Google Scholar 

  • Ippen AT (1971) A new look at sedimentation in turbulent streams. J Boston Soc Civ Eng 58(3):131–163

    Google Scholar 

  • Itakura T, Kishi T (1980) Open channel flow with suspended sediments. J Hydraul Div 106(8):1325–1343

    Google Scholar 

  • Jobson JE, Sayre WW (1970) Vertical transfer in open channel flow. J Hydraul Div 96(3):703–724

    Google Scholar 

  • Keulegan GH (1938) Laws of turbulent flow in open channels. J Res Natl Bur Stand 21(6):707–741

    Google Scholar 

  • Khullar NK, Kothyari UC, Ranga Raju KG (2010) Suspended wash load transport of nonuniform sediments. J Hydraul Eng 136(8):534–543

    Google Scholar 

  • Lane EW (1947) Report of the subcommittee on sediment terminology. Trans Am Geophys Union 28(6):936–938

    Google Scholar 

  • Lane EW, Kalinske AA (1941) Engineering calculations of suspended sediment. Trans Am Geophys Union 20(3):603–607

    Google Scholar 

  • Laursen EM (1980) A concentration distribution formula from the revised theory of Prandtl mixing length. In: Proceedings of the first international symposium on river sedimentation. Guanghua Press, Beijing, pp 237–244

    Google Scholar 

  • Lavelle JW, Thacker WC (1978) Effects of hindered settling on sediment concentration profiles. J Hydraul Res 16(4):347–355

    Google Scholar 

  • Lelouvetel J, Bigillon F, Doppler D, Vinkovic I, Champagne J-Y (2009) Experimental investigation of ejections and sweeps involved in particle suspension. Water Resour Res 45:W02416. doi:10.1029/2007WR006520

    Google Scholar 

  • Liggett JA (1994) Fluid mechanics. McGraw-Hill, New York

    Google Scholar 

  • Lyn DA (1986) Turbulence and turbulent transport in sediment-laden open-channel flows. Report number KH-R-49, WM Keck Laboratory of Hydraulic and Water Resources, California Institute of Technology, Pasadena

    Google Scholar 

  • Lyn DA (1988) A similarity approach to turbulent sediment laden flows in open channels. J Fluid Mech 193:1–26

    Google Scholar 

  • Lyn DA (1992) Turbulence characteristics of sediment-laden flows in open channels. J Hydraul Eng 118(7):971–988

    Google Scholar 

  • Majumdar H, Carstens MR (1967) Diffusion of particles by turbulence: effect on particle size. WRC-0967, Water Resources Center, Georgia Institute of Technology, Atlanta

    Google Scholar 

  • Mao Y (2003) The effects of turbulent bursting on the sediment movement in suspension. Int J Sediment Res 18(2):148–157

    Google Scholar 

  • McLean SR (1991) Depth-integrated suspended-load calculations. J Hydraul Eng 117(11):1440–1458

    Google Scholar 

  • McLean SR (1992) On the calculation of suspended load for noncohesive sediments. J Geophys Res 97(C4):5759–5770

    Google Scholar 

  • McTigue DF (1981) Mixture theory for suspended sediment transport. J Hydraul Div 107(6):659–673

    Google Scholar 

  • Mei CC (1969) Nonuniform diffusion of suspended sediment. J Hydraul Div 95(1):581–584

    Google Scholar 

  • Montes JS (1973) Interaction of two dimensional turbulent flow with suspended particles. PhD thesis, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Muste M (2002) Sources of bias errors in flume experiments on suspended-sediment transport. J Hydraul Res 40(6):695–708

    Google Scholar 

  • Nakato T (1984) Numerical integration of Einstein’s integrals, I 1 and I 2. J Hydraul Eng 110(12):1863–1868

    Google Scholar 

  • Nezu I (1977) Turbulent structure in open channel flow. PhD thesis, Kyoto University, Kyoto

    Google Scholar 

  • Nezu I, Azuma R (2004) Turbulence characteristics and interaction between particles and fluid in particle-laden open channel flows. J Hydraul Eng 130(10):988–1001

    Google Scholar 

  • Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. Balkema, Rotterdam

    Google Scholar 

  • Ni JR, Wang GQ (1991) Vertical sediment distribution. J Hydraul Eng 117(9):1184–1194

    Google Scholar 

  • Nielsen P (1992) Coastal bottom boundary layers and sediment transport. World Scientific, Singapore

    Google Scholar 

  • Niño Y, García MH (1996) Experiments on particle-turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport. J Fluid Mech 326:285–319

    Google Scholar 

  • Nouh M (1989) The von-Kármán coefficient in sediment laden flow. J Hydraul Res 27(4):477–499

    Google Scholar 

  • Parker G, Coleman NL (1986) Simple model for sediment laden flows. J Hydraul Eng 112(5):356–375

    Google Scholar 

  • Partheniades E (1977) Unified view of wash load and bed material load. J Hydraul Eng 103(9):1037–1057

    Google Scholar 

  • Richardson JF, Zaki WN (1954) Sedimentation and fluidisation, part I. Trans Inst Chem Eng 32(1):35–53

    Google Scholar 

  • Rouse H (1937) Modern conceptions of the mechanics of turbulence. Trans Am Soc Civ Eng 102:463–505

    Google Scholar 

  • Samaga BR, Ranga Raju KG, Garde RJ (1986) Suspended load transport rate of sediment mixture. J Hydraul Eng 112(11):1019–1038

    Google Scholar 

  • Schmidt W (1925) Der massenaustausch in freier luft und verwandtle erscheinungen. Probleme der Kosmischen Physik, vol 7, Hamburg

    Google Scholar 

  • Shen HW (1970) Wash load and bed load. In: Shen HW (ed) River mechanics, vol I. Fort Collins, Colorado, pp 11.1–11.30

    Google Scholar 

  • Smith JD, McLean SR (1977a) Spatially averaged flow over a wavy surface. J Geophys Res 82(12):1735–1746

    Google Scholar 

  • Smith JD, McLean SR (1977b) Boundary layer adjustments to bottom topography and suspended sediment. In: Nihoul JCJ (ed) Bottom turbulence, vol 112., Proceedings of the eighth international liege colloquium on ocean hydrodynamics, Elsevier Scientific Publishing Company, Liege, pp 123–151

    Google Scholar 

  • Soulsby RL, Atkins R, Salkield AP (1994) Observations of the turbulent structures of a suspension of sand in a tidal current. Cont Shelf Res 14(4):429–435

    Google Scholar 

  • Sumer BM (1986) Recent developments on the mechanics of sediment suspension. In: Bechteler W (ed) Transport of suspended solids in open channels, Euromech 192, Neubiberg. Balkema, Rotterdam, pp 3–13

    Google Scholar 

  • Sumer BM, Deigaard R (1981) Particle motions near the bottom in turbulent flow in an open channel, Part 2. J Fluid Mech 109:311–337

    Google Scholar 

  • Sumer BM, Oguz B (1978) Particle motions near the bottom in turbulent flow in an open channel. J Fluid Mech 86:109–127

    Google Scholar 

  • Tanaka S, Sugimoto S (1958) On the distribution of suspended sediment in experimental flume flow. Mem Fac Eng Kobe Univ 5:61–71

    Google Scholar 

  • Umeyama M (1992) Vertical distribution of suspended sediment in uniform open-channel flow. J Hydraul Eng 118(6):936–941

    Google Scholar 

  • Umeyama M, Gerritsen F (1992) Velocity distribution in uniform sediment-laden flow. J Hydraul Eng 118(2):229–245

    Google Scholar 

  • Valiani A (1988) An open question regarding shear flow with suspended sediments. Meccanica 23(1):36–43

    Google Scholar 

  • van Ingen C (1983) A signal-processing system for laser-Doppler velocimetry in solid-liquid flows. Report UCBIHEL-83102, Hydraulic Engineering Laboratory, University of California, Berkeley, California

    Google Scholar 

  • van Rijn LC (1984a) Sediment transport, part I: bed load transport. J Hydraul Eng 110(10):1431–1456

    Google Scholar 

  • van Rijn LC (1984b) Sediment transport, part II: suspended load transport. J Hydraul Eng 110(11):1613–1641

    Google Scholar 

  • van Rijn LC (1986) Mathematical modeling of suspended sediment in nonuniform flows. J Hydraul Eng 112(6):433–455

    Google Scholar 

  • Vanoni VA (1946) Transportation of suspended sediment by water. Trans Am Soc Civ Eng 111:67–102

    Google Scholar 

  • Vanoni VA, Nomicos GN (1960) Resistance properties of sediment-laden streams. Trans Am Soc Civ Eng 125:1140–1167

    Google Scholar 

  • Velikanov MA (1954) Principle of the gravitational theory of the movement of sediments. Acad Sci Bull, Geophys Ser 4

    Google Scholar 

  • Velikanov MA (1958) Alluvial process (fundamental principles). State Publishing House of Theoretical and Technical Literature, Russia

    Google Scholar 

  • Wang X, Qian N (1989) Turbulence characteristics of sediment-laden flow. J Hydraul Eng 115(6):781–800

    Google Scholar 

  • Wang X, Qian N (1992) Velocity profiles of sediment-laden flow. Int J Sediment Res 7(1):27–58

    Google Scholar 

  • Wang X, Wang ZY, Yu M, Li D (2001) Velocity profile of sediment suspensions and comparison of log-law and wake-law. J Hydraul Res 39(2):211–217

    Google Scholar 

  • White FM (1991) Viscous fluid flow. McGraw-Hill, New York

    Google Scholar 

  • WIHEE (1981) River sedimentation engineering. Hydraulic and Electric Press, Wuhan Institute of Hydraulic and Electric Engineering, China

    Google Scholar 

  • Willis JC (1979) Suspended load from error-function models. J Hydraul Div 105(7):801–816

    Google Scholar 

  • Wilson KC (1966) Bedload transport at high shear stresses. J Hydraul Div 92(6):49–59

    Google Scholar 

  • Woo HS, Julien PY, Richardson EV (1986) Wash load and fine sediment load. J Hydraul Eng 112(6):541–545

    Google Scholar 

  • Wright S, Parker G (2004) Flow resistance and suspended load in sand-bed rivers: simplified stratification model. J Hydraul Eng 130(8):796–805

    Google Scholar 

  • Wu W, Wang SSY, Jia Y (2000) Nonuniform sediment transport in alluvial rivers. J Hydraul Res 38(6):427–434

    Google Scholar 

  • Xie JH (1981) River sediment engineering, vol 1. Water Resources Press, Beijing (in Chinese)

    Google Scholar 

  • Yalin MS, Karahan E (1979) Inception of sediment transport. J Hydraul Div 105(11):1433–1443

    Google Scholar 

  • Zagustin K (1968) Sediment distribution in turbulent flow. J Hydraul Res 6(2):163–172

    Google Scholar 

  • Zhang Q, Zhang Z, Yue J, Duan Z, Dai M (1983) A mathematical model for prediction of the sedimentation process in rivers. In: Proceedings of the second international symposium on river sedimentation, Nanjing

    Google Scholar 

  • Zhang RJ (1961) River dynamics. Industry Press, Beijing (in Chinese)

    Google Scholar 

  • Zhang RJ, Xie JH (1993) Sedimentation research in China: systematic selections. Water and Power Press, Beijing

    Google Scholar 

  • Zyserman J, Fredsøe J (1994) Data analysis of bed concentration of suspended sediment. J Hydraul Eng 120(9):1021–1042

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasish Dey .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dey, S. (2014). Suspended-Load Transport. In: Fluvial Hydrodynamics. GeoPlanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19062-9_6

Download citation

Publish with us

Policies and ethics