Skip to main content

Scour

  • Chapter
  • First Online:
Fluvial Hydrodynamics

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

The phenomenon of lowering the riverbed level due to removal of sediment is known as scour. In general, scour is classified as general scour, contraction scour, and local scour. This chapter provides a comprehensive discussion on scour within channel contractions, downstream of structures, below horizontal pipelines, at bridge piers, and abutments. Further, scour countermeasures are of paramount importance to river engineers. This issue is also discussed. Numerical examples on prediction of scour depths are worked out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dey and Raikar (2007b) considered section 0 at the upstream of the drop where the critical depth h c occurs and section 0 at the entry of jet into the tailwater (Fig. 10.4b). The continuity equation applied between sections 1 and 0 is

    $$ U_{\text{c}} h_{\text{c}} = U_{0} l_{0} $$

    where U c is the critical velocity of the flow upstream of the drop. According to Bakhmeteff (1932), the jet velocity U 0 is given by

    $$ U_{0} = C_{0} [2g(h_{0} + 1.5h_{\text{c}} )]^{0.5} $$

    where C 0 is the velocity coefficient and h 0 is the height of drop above the tailwater level.

    Using the value of end-depth-ratio (= h e/h c, where h e is the end depth) for rectangular channels equaling 0.715 as given by Rouse (1936), the above equation becomes

    $$ U_{0} = C_{0} [2g(h_{0} + 2.1h_{\text{e}} )]^{0.5} $$

    Inserting into the continuity equation, the expression for jet thickness l 0 can be written as

    $$ l_{0} = \frac{{1.17h_{\text{e}}^{1.5} }}{{C_{0} (h_{0} + 2.1h_{\text{e}} )^{0.5} }} $$

    Using the experimental data, the value of C 0 was estimated as 0.672.

  2. 2.

    Shape factor is the ratio of the equilibrium scour depth for a given non-circular pipe to that for a circular shaped pipe having a same diameter to the vertical cross-sectional length of the non-circular pipe.

References

  • Altinbilek HD, Basmaci Y (1973) Localized scour at the downstream of outlet structures. In: Proceedings of the eleventh congress on Large Dam, Madrid, pp 105–121

    Google Scholar 

  • Atayee AT, Pagan-Ortiz JE, Jones JS, Kilgore RT (1993) A study of riprap as a scour protection for spill-through abutments. American Society of Civil Engineers (ASCE) hydraulic engineering conference, San Francisco, California

    Google Scholar 

  • Austroads (1994) Waterway design—a guide to the hydraulic design of bridges, culverts and floodways. Austroads, Sydney

    Google Scholar 

  • Bakhmeteff BA (1932) Hydraulics of open channels. McGraw-Hill, New York

    Google Scholar 

  • Barbhuiya AK (2003) Clear water scour at abutments. PhD thesis, Department of Civil Engineering, Indian Institute of Technology, Kharagpur

    Google Scholar 

  • Barbhuiya AK, Dey S (2004) Velocity and turbulence at a wing-wall abutment. Proc Indian Acad Sci Sadhana 29(Feb):35–56

    Google Scholar 

  • Barenblatt GI, Chorin AJ, Prostokishin VM (2005) The turbulent wall jet: a triple-layered structure and incomplete similarity. Proc Natl Acad Sci 102(25):8850–8853

    Article  Google Scholar 

  • Bijker EW, Leeuwestein W (1984) Interaction between pipeline and the seabed under the influence of waves and current. In: Proceedings of the symposium of International Union of Theoretical and Applied Mechanics/International Union of Geology and Geophysics, seabed mechanics, pp 235-242

    Google Scholar 

  • Bormann NE, Julien PY (1991) Scour downstream of grade-control structures. J Hydraul Eng 117(5):579–594

    Article  Google Scholar 

  • Breusers HNC, Nicollet G, Shen HW (1977) Local scour around cylindrical piers. J Hydraul Res 15(3):211–252

    Article  Google Scholar 

  • Breusers HNC, Raudkivi AJ (1991) Scouring. Balkema, Rotterdam

    Google Scholar 

  • Chao JL, Hennessy PV (1972) Local scour under ocean outfall pipe-lines. J Water Pollut Control Fed 44(7):1443–1447

    Google Scholar 

  • Chiew YM (1991) Prediction of maximum scour depth at submarine pipelines. J Hydraul Eng 117(4):452–466

    Article  Google Scholar 

  • Chiew YM (1995) Mechanics of riprap failure at bridge piers. J Hydraul Eng 121(9):635–643

    Article  Google Scholar 

  • Chiew YM, Lim SY (2003) Protection of bridge piers using a sacrificial sill. Water Marit Energ Proc Inst Civ Eng (London) 156(1):53–62

    Google Scholar 

  • Croad RN (1997) Protection from scour of bridge piers using riprap. Transit New Zealand research report number PR3-0071, Works Consultancy Services Limited, Central Laboratories, Lower Hutt, Wellington

    Google Scholar 

  • D’Agostino V, Ferro V (2004) Scour on alluvial bed downstream of grade-control structures. J Hydraul Eng 130(1):24–37

    Article  Google Scholar 

  • Dey S (1991) Clear water scour around circular bridge piers: a model. PhD thesis, Department of Civil Engineering, Indian Institute of Technology, Kharagpur

    Google Scholar 

  • Dey S (1995) Three-dimensional vortex flow field around a circular cylinder in a quasi-equilibrium scour hole. Proc Indian Acad Sci Sadhana 20(Dec):871–885

    Google Scholar 

  • Dey S (1997a) Local scour at piers, part 1: a review of development of research. Int J Sediment Res 12(2):23–44

    Google Scholar 

  • Dey S (1997b) Local scour at piers, part 2: bibliography. Int J Sediment Res 12(2):45–57

    Google Scholar 

  • Dey S (1999) Time-variation of scour in the vicinity of circular piers. Water Marit Energ Proc Inst Civ Eng (London) 136(2):67–75

    Google Scholar 

  • Dey S, Barbhuiya AK (2004) Clear water scour at abutments. Water Management Proc Inst Civ Eng (London) 157(WM2):77–97

    Google Scholar 

  • Dey S, Barbhuiya AK (2005a) Turbulent flow field in a scour hole at a semicircular abutment. Can J Civ Eng 32(1):213–232

    Article  Google Scholar 

  • Dey S, Barbhuiya AK (2005b) Flow field at a vertical-wall abutment. J Hydraul Eng 131(12):1126–1135

    Article  Google Scholar 

  • Dey S, Barbhuiya AK (2006) 3D flow field in a scour hole at a wing-wall abutment. J Hydraul Res 44(1):33–50

    Article  Google Scholar 

  • Dey S, Bose SK (1994) Bed shear in equilibrium scour around a circular cylinder embedded in loose bed. Appl Math Model 18(5):265–273

    Article  Google Scholar 

  • Dey S, Bose SK, Sastry GLN (1995) Clear water scour at circular piers: a model. J Hydraul Eng 121(12):869–876

    Article  Google Scholar 

  • Dey S, Nath TK, Bose SK (2010) Submerged wall jets subjected to injection and suction from the wall. J Fluid Mech 653:57–97

    Article  Google Scholar 

  • Dey S, Raikar RV (2005) Scour in long contractions. J Hydraul Eng 131(12):1036–1049

    Article  Google Scholar 

  • Dey S, Raikar RV (2006) Live-bed scour in long contractions. Int J Sediment Res 21(2):166–170

    Google Scholar 

  • Dey S, Raikar RV (2007a) Characteristics of horseshoe vortex in developing scour holes at piers. J Hydraul Eng 133(4):399–413

    Article  Google Scholar 

  • Dey S, Raikar RV (2007b) Scour below a high vertical drop. J Hydraul Eng 133(5):564–568

    Article  Google Scholar 

  • Dey S, Sarkar A (2006a) Scour downstream of an apron due to submerged horizontal jets. J Hydraul Eng 132(3):246–257

    Article  Google Scholar 

  • Dey S, Sarkar A (2006b) Response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds and its application to scour downstream of an apron. J Fluid Mech 556:387–419

    Article  Google Scholar 

  • Dey S, Singh NP (2007) Clear-water scour depth below underwater pipelines. J Hydro-Environ Res 1(2):157–162

    Article  Google Scholar 

  • Dey S, Singh NP (2008) Clear-water scour below underwater pipelines under steady flow. J Hydraul Eng 134(5):588–600

    Article  Google Scholar 

  • Dey S, Sumer BM, Fredsøe J (2006) Control of scour at vertical circular piles under waves and current. J Hydraul Eng 132(3):270–279

    Article  Google Scholar 

  • Eggenberger W, Müller R (1944) Experimentelle und theoretische untersuchunger über das kolkproblem. Number 5, Mitteilungen der Versuchsanstalt für Wasserbau, ETH Zurich, Zurich

    Google Scholar 

  • Ettema R (1980) Scour at bridge piers. Report number 216, School of Engineering, University of Auckland, Auckland

    Google Scholar 

  • Fahlbusch FE (1994) Scour in rock riverbeds downstream of large dams. Int J Hydropower Dams 1(4):30–32

    Google Scholar 

  • Fredsøe J, Deigaard R (1992) Mechanics of coastal sediment transport. World Scientific, Singapore

    Google Scholar 

  • Froehlich DC (1989) Local scour at bridge abutments. In: Proceedings of the national conference on hydraulic engineering, American Society of Civil Engineers, New Orleans, LA, pp 13–18

    Google Scholar 

  • Gaudio R, Marion A (2003) Time evolution of scouring downstream of bed sills. J Hydraul Res 41(3):271–284

    Article  Google Scholar 

  • Gaudio R, Marion A, Bovolin V (2000) Morphological effects of bed sills in degrading rivers. J Hydraul Res 38(2):89–96

    Article  Google Scholar 

  • Gill MA (1970) Bed erosion around obstructions in rivers. PhD thesis, University of London, London

    Google Scholar 

  • Gill MA (1972) Erosion of sand beds around spur-dikes. J Hydraul Div 98(9):1587–1602

    Google Scholar 

  • Gill MA (1981) Bed erosion in rectangular long constriction. J Hydraul Div 107(3):273–284

    Google Scholar 

  • Graf WH (1998) Fluvial hydraulics: flow and transport processes in channels of simple geometry. Wiley, Chichester

    Google Scholar 

  • Graf WH, Istiarto I (2002) Flow pattern in the scour hole around a cylinder. J Hydraul Res 40(1):13–20

    Article  Google Scholar 

  • Grimaldi C, Gaudio R, Calomino F, Cardoso AH (2009) Countermeasures against local scouring at bridge piers: slot and combined system of slot and bed sill. J Hydraul Eng 135(5):425–431

    Article  Google Scholar 

  • Haaland SE (1983) Simple and explicit formulas for the friction factor in turbulent flow. J Fluids Eng 105(5):89–90

    Article  Google Scholar 

  • Hancu S (1971) Sur le calcul des affouillements locaux dans la zone des piles du pont. In: Proceedings of the fourteenth congress of International Association for Hydraulic Research, Paris, pp 299–305

    Google Scholar 

  • Haque MA, Rahman MM, Islam GMT, Hussain MA (2007) Scour mitigation at bridge piers using sacrificial piles. Int J Sediment Res 22(1):49–59

    Google Scholar 

  • Hoffmans GJCM (1998) Jet scour in equilibrium phase. J Hydraul Eng 124(4):430–437

    Google Scholar 

  • Hoffmans GJCM, Verheij HC (1997) Scour manual. Balkema, Rotterdam

    Google Scholar 

  • Hogg AJ, Huppert HE, Dade WB (1997) Erosion by planar turbulent wall jets. J Fluid Mech 338:317–340

    Article  Google Scholar 

  • Ibrahim A, Nalluri C (1986) Scour prediction around marine pipelines. In: Proceedings of the fifth international symposium on offshore mechanics and arctic engineering, Tokyo, pp 679–684

    Google Scholar 

  • Isbash SV (1936) Construction of dams by depositing rock in running water. In: Transactions of the second congress on Large Dams, vol 5. Washington DC, pp 126–136

    Google Scholar 

  • Jain SC (1981) Maximum clear-water scour around circular piers. J Hydraul Div 107(5):611–626

    Google Scholar 

  • Jain SC, Fischer EE (1979) Scour around bridge piers at high Froude numbers. Report number FHWA-RD-79-104, Federal Highway Administration, US Department of Transportation, Washington DC

    Google Scholar 

  • Jain SC, Fischer EE (1980) Scour around bridge piers at high flow velocities. J Hydraul Div 106(11):1827–1841

    Google Scholar 

  • Jensen BL, Sumer BM, Jensen R, Fredsøe J (1990) Flow around and forces on a pipeline near scoured bed in steady current. J Offshore Mech Arct Eng 112(3):206–213

    Article  Google Scholar 

  • Kandasamy JK, Melville BW (1998) Maximum local scour depth at bridge piers and abutments. J Hydraul Res 36(2):183–198

    Article  Google Scholar 

  • Kim UY, Kim JS, Ahn SJ, Hahm CH (2005) Scour countermeasure using additional facility in front of bridge pier. In: Proceedings of the thirty-first congress of International Association for Hydraulic Research, Seoul, pp 5823–5829

    Google Scholar 

  • Kjeldsen SP, Gjørsvik O, Bringaker KG, Jacobsen J (1973) Local scour near offshore pipelines. In: Proceedings of the second international conference on port and ocean engineering under arctic conditions, University of Iceland, Iceland, pp 308–331

    Google Scholar 

  • Komura S (1966) Equilibrium depth of scour in long constrictions. J Hydraul Div 92(5):17–37

    Google Scholar 

  • Kotoulas D (1967) Das kolkproblem unter besonderer berücksichtigung der faktoren zeit und geschiebemischung im rahmen der wildbachverbauung. Dissertation, Technischen Hochschule Zürich, Zürich

    Google Scholar 

  • Kwan TF (1988) A study of abutment scour. Report number 451, School of Engineering, University of Auckland, Auckland

    Google Scholar 

  • Kwan TF, Melville BW (1994) Local scour and flow measurements at bridge abutments. J Hydraul Res 32(5):661–673

    Article  Google Scholar 

  • Lagasse PF, Clopper PE, Zevenbergen LW, Girard LG (2007) Countermeasures to protect bridge piers from scour. NCHRP report 593, Transportation Research Board, Washington DC

    Google Scholar 

  • Lagasse PF, Zevenbergen LW, Schall JD, Clopper PE (2001) Bridge scour and stream instability countermeasures. Hydraulic engineering circular number 23 (HEC 23), Publication number NHI 01-003, Federal Highway Administration, Washington DC

    Google Scholar 

  • Lauchlan CS (1999) Pier scour countermeasures. PhD thesis, University of Auckland, Auckland

    Google Scholar 

  • Launder BE, Rodi W (1981) The turbulent wall jet. Prog Aerosp Sci 19(2–4):81–128

    Google Scholar 

  • Laursen EM (1963) An analysis of relief bridge scour. J Hydraul Div 89(3):93–118

    Google Scholar 

  • Laursen EM, Toch A (1956) Scour around bridge piers and abutments. Bulletin number 4, Iowa Highways Research Board, Ames, Iowa

    Google Scholar 

  • Lenzi MA, Marion A, Comiti F, Gaudio R (2002) Local scouring in low and high gradient streams at bed sills. J Hydraul Res 40(6):731–739

    Article  Google Scholar 

  • Lim S-Y (1993) Clear water scour in long contractions. Water Marit Energ Proc Inst Civ Eng (London) 101(2):93–98

    Google Scholar 

  • Lim S-Y (1997) Equilibrium clear-water scour around an abutment. J Hydraul Eng 123(3):237–243

    Article  Google Scholar 

  • Lim S-Y, Cheng N-S (1998) Scouring in long contractions. J Irrig Drainage Eng 124(5):258–261

    Article  Google Scholar 

  • Liu HK, Chang FM, Skinner M (1961) Effect of bridge construction on scour and backwater. CER 60 HKL 22, Colorado State University, Civil Engineering Section, Fort Collins, Colorado

    Google Scholar 

  • Macky GH (1990) Survey of roading expenditure due to scour. Report 90.09, Department of Scientific and Industrial Research, Hydrology Centre, Christchurch

    Google Scholar 

  • Melville BW (1975) Local scour at bridge sites. Report number 117, School of Engineering, University of Auckland, Auckland

    Google Scholar 

  • Melville BW (1992) Local scour at bridge abutments. J Hydraul Eng 118(4):615–631

    Article  Google Scholar 

  • Melville BW, Coleman SE (2000) Bridge scour. Water Resources Publications, Fort Collins

    Google Scholar 

  • Melville BW, Hadfield AC (1999) Use of sacrificial piles as pier scour countermeasures. J Hydraul Eng 125(11):1221–1224

    Article  Google Scholar 

  • Melville BW, Parola AC, Coleman SE (2008) Bridge-scour prevention and countermeasures. In: García MH (ed) Sedimentation engineering: processes, measurements, modeling, and practice, ASCE manuals and reports on engineering practice number 110, American Society of Civil Engineers, Reston, VA, pp 543–577

    Google Scholar 

  • Melville BW, Sutherland AJ (1988) Design method for local scour at bridge piers. J Hydraul Eng 114(10):1210–1226

    Article  Google Scholar 

  • Moncada-M A, Aguirre-Pe J (1999) Scour below pipeline in river crossings. J Hydraul Eng 125(9):953–958

    Article  Google Scholar 

  • Neill CR (1964) River bed scour, a review for bridge engineers. Contract number 281, Research Council of Alberta, Calgary, Alberta

    Google Scholar 

  • Neill CR (1973) Guide to bridge hydraulics. University of Toronto Press, Toronto (Roads and Transportation Association of Canada)

    Google Scholar 

  • Odgaard AJ, Wang Y (1991) Sediment management with submerged vanes 1: theory. J Hydraul Eng 117(3):267–283

    Article  Google Scholar 

  • Parker G, Toro-Escobar C, Voigt RL (1998) Countermeasures to protect bridge piers from scour. Final report NCHRP project 24-7, Transportation Research Board, Washington DC

    Google Scholar 

  • Parola AC (1995) Boundary stress and stability of riprap at bridge piers. In: Thorne CR, Abt SR, Barends FBJ, Maynord ST, Pilarczyk KW (eds) River, coastal and shoreline protection: erosion control using riprap and armor stone. Wiley, Chichester, pp 149–158

    Google Scholar 

  • Qayoum A (1960) Die gesetzmäβigkeit der kolkbildung hinter unterströmter wehren unter spezieller berücksichtigung der gestaltung eines beweglichen sturzbettes. Dissertation, Technischen Hochschule Carolo-Wilhelmina, Braunschweig

    Google Scholar 

  • Raikar RV, Dey S (2005a) Scour of gravel beds at bridge piers and abutments. Water Management Proc Inst Civil Eng (London) 158(Jun):157–162

    Google Scholar 

  • Raikar RV, Dey S (2005b) Clear-water scour at bridge piers in fine and medium gravel beds. Can J Civ Eng 32(4):775–781

    Article  Google Scholar 

  • Raikar RV, Dey S (2008) Kinematics of horseshoe vortex development in an evolving scour hole at a square cylinder. J Hydraul Res 46(2):247–264

    Google Scholar 

  • Rajaratnam N (1976) Turbulent jets. Elsevier Science, Amsterdam

    Google Scholar 

  • Raudkivi AJ (1986) Functional trends of scour bridge piers. J Hydraul Eng 112(1):1–13

    Article  Google Scholar 

  • Richardson EV, Davis SR (2001) Evaluating scour at bridges. Hydraulic engineering circular number 18 (HEC 18). Publication number NHI 01-001, Federal Highway Administration, US Department of Transportation, Washington DC

    Google Scholar 

  • Richardson EV, Harrison LJ, Richardson JR, Davis SR (1993) Evaluating scour at bridges. Publication number FHWA-IP-90-017, Federal Highway Administration, US Department of Transportation, Washington DC

    Google Scholar 

  • Rouse H (1936) Discharge characteristics of the free overfall. Civ Eng 6(4):125–134

    Google Scholar 

  • Schlichting H (1979) Boundary layer theory. McGraw-Hill Book Company, New York

    Google Scholar 

  • Schoklitsch A (1932) Kolkbildung unter uberfallstrahlen. Wasserwirtschaft 24:341–343

    Google Scholar 

  • Schwarz WH, Cosart WP (1961) The two-dimensional turbulent wall jet. J Fluid Mech 10:481–495

    Article  Google Scholar 

  • Shalash MSE (1959) Die kolkbildung beim ausfluss unter schützen. Dissertation, Technischen Hochschule München, Munich

    Google Scholar 

  • Shen HW, Schneider VR, Karaki S (1969) Local scour around bridge piers. J Hydraul Div 95(6):1919–1940

    Google Scholar 

  • Sheppard DM, Melville B, Demir H (2014) Evaluation of existing equations for local scour at bridge piers. J Hydraul Eng 140(1):14–23

    Article  Google Scholar 

  • Smith CD (1967) Simplified design for flume inlets. J Hydraul Div 93(6):25–34

    Google Scholar 

  • Stein OR, Julien PY, Alonso CV (1993) Mechanics of jet scour downstream of a headcut. J Hydraul Res 31(6):723–738

    Article  Google Scholar 

  • Straub LG (1934) Effect of channel contraction works upon regimen of movable bed streams. Trans Am Geophys Union 15(2):454–463

    Article  Google Scholar 

  • Sturm TW, Janjua NS (1994) Clear water scour around abutments in floodplains. J Hydraul Eng 120(8):956–972

    Article  Google Scholar 

  • Sumer BM, Fredsøe J (2002) The mechanism of scour in the marine environment. World Scientific, Singapore

    Book  Google Scholar 

  • Sumer BM, Truelsen C, Sichmann T, Fredsøe J (2001) Onset of scour below pipelines and selfburial. Coast Eng 42(4):213–235

    Article  Google Scholar 

  • Sutherland AJ (1986) Reports on bridge failure. RRU occasional paper, National Roads Board, Wellington

    Google Scholar 

  • Tafarojnoruz A, Gaudio R, Dey S (2010) Flow-altering countermeasures against scour at bridge piers: a review. J Hydraul Res 48(4):441–452

    Article  Google Scholar 

  • Vanoni VA (1975) Sedimentation engineering. ASCE manual number 54, American Society of Civil Engineers, New York

    Google Scholar 

  • Webby MG (1984) General scour at contraction. RRU bulletin 73, National Roads Board, Bridge Design and Research Seminar, New Zealand, pp 109–118

    Google Scholar 

  • Yalin MS (1977) Mechanics of sediment transport. Pergamon, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasish Dey .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dey, S. (2014). Scour. In: Fluvial Hydrodynamics. GeoPlanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19062-9_10

Download citation

Publish with us

Policies and ethics