Skip to main content

Influence of the Counterions on the Behaviour of Polyelectrolytes

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XXIV

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 138))

Abstract

The influence of the counterions on the hydrodynamic size and the effective charge of poly(styrene sulfonate) has been investigated applying a combination of pulsed-field gradient (PFG) NMR and electrophoresis NMR. From the diffusion coefficient, determined by PFG NMR the hydrodynamic radius as a measure of the size is inferred. Electrophresis NMR yields the electrophoretic mobility and thus the effective charge of the macromolecule. An increased ionic strength of the solution results in a more coiled conformation of the polyelectrolyte, an effect which is more pronounced for bivalent ions. If the dielectric constant of the solution is lowered, the effective charge is reduced as well. The effect on the overall conformation strongly depends on the kind of the counterion. While a small effect is observed for the acid form, the most drastic effect is found for sodium as a counterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manning GS (1974) In: Sélégny E, Mandel M, Strauss UP (editors) Polyelectrolytes. D. Reidel Publishing Company, Dordrecht-Holland, p. 9 ff.

    Google Scholar 

  2. Böhme U, Scheler U (2004) Macromol Symp 211:87

    Article  Google Scholar 

  3. Dobrynin AV (2008) Curr Opin Colloid Interface Sci 13:376

    Article  CAS  Google Scholar 

  4. Holm C, Joanny JF, Kremer K, Netz RR, Reineker P, Seidel C, Vilgis TA, Winkler RG (2004) Adv Polym Sci 166:67

    Article  CAS  Google Scholar 

  5. Kundagrami A, Muthukumar M (2010) Macromolecules 43:2574

    Article  CAS  Google Scholar 

  6. Schweins R, Huber K (2004) Macromol Symp 211:25

    Article  CAS  Google Scholar 

  7. Wakagawa M, Hayashi M, Kuroki S, Satoh M (2009) J Polymer Sci B 47:2132

    Article  CAS  Google Scholar 

  8. Katz AA, Leibler L (2009) Soft Matter 5:2198

    Article  Google Scholar 

  9. Loh P, Deen GR, Vollmer D, Fischer K, Schmidt M, Kundagram A, Muthukumar M (2008) Macromolecules 41:9352

    Article  CAS  Google Scholar 

  10. Callaghan PT (1991) Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford, p. 441 ff.

    Google Scholar 

  11. Kimmich R (1997) NMR Tomography, Diffusometry, Relaxometry. Springer, Berlin Heidelberg

    Google Scholar 

  12. Böhme U, Scheler U (2002) Macromol Symp 184:349

    Article  Google Scholar 

  13. Sagidullin A, Fritzinger B, Scheler U, Skirda VD (2004) Polymer 45:165

    Article  CAS  Google Scholar 

  14. Grass K, Böhme U, Scheler U, Cottet H, Holm C (2008) Phys Rev Lett 100:096104

    Article  Google Scholar 

  15. Stilbs P, Furó I (2006) Curr Opin Colloid Interface Sci 11:3

    Article  CAS  Google Scholar 

  16. Böhme U, Vogel C, Meier-Haack J, Scheler U (2007) J Chem Phys B 111:8344

    Google Scholar 

  17. Griffiths PC, Paul A, Hirst N (2006) Chem Soc Rev 35:134

    Article  CAS  Google Scholar 

  18. Hallberg F, Furó I, Yushmanov PV, Stilbs P (2008) J Magn Reson 192:69

    Article  CAS  Google Scholar 

  19. Scheler U (2002) In: Tripaty SK, Kumar J, Nalwa HS (editors) Handbook of Polyelectrolytes and Their Applications, vol 2. American Scientific Publishers, Stevenson Ranch, California, USA, p. 173 ff.

    Google Scholar 

  20. Böhme U, Scheler U (2003) Colloids Surf A 222:35

    Article  Google Scholar 

  21. Böhme U, Scheler U (2007) Macromol Chem Phys 208:2254

    Article  Google Scholar 

  22. Böhme U, Scheler U (2010) Adv Colloid Interface Sci 158:63

    Article  Google Scholar 

  23. Stejskal EO (1965) J Chem Phys 43:3597

    Article  Google Scholar 

  24. van Beek JD (2007) J Magn Reson 187:19

    Article  Google Scholar 

  25. In: Lechner MD (ed) D’ Ans Lax, Taschenbuch für Chemiker und Physiker, 4. Auflage, Band 1, Physikalisch-chemische Daten, Springer, Berlin Heidelberg New York (2001).

    Google Scholar 

  26. Wensink EJW, Hoffman AC (2003) J. Chem. Phys 119:14

    Article  Google Scholar 

  27. Böhme U, Scheler U (2007) J Colloid Interface Sci 309:231

    Article  Google Scholar 

  28. Synowietz C, Schäfer K (1984) Chemiker Kalender. Springer, Berlin Heidelberg New York Tokyo, p121, p133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Scheler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Böhme, U., Hänel, B., Scheler, U. (2011). Influence of the Counterions on the Behaviour of Polyelectrolytes. In: Starov, V., Procházka, K. (eds) Trends in Colloid and Interface Science XXIV. Progress in Colloid and Polymer Science, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19038-4_8

Download citation

Publish with us

Policies and ethics