Skip to main content

Computer Simulations of Quasi-Steady Evaporation of Sessile Liquid Droplets

  • Conference paper
  • First Online:
Trends in Colloid and Interface Science XXIV

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 138))

Abstract

Instantaneous distribution of mass and thermal fluxes inside and outside of an evaporating sessile droplet is considered using computer simulations. The latter distribution is calculated in a self consistent way by considering an interconnected problem of vapour transfer in the vapour phase outside the droplet; heat transfer in vapour, liquid and solid substrate; and Marangoni convection inside the liquid droplet. The influence of thermal conductivity of the solid support on the evaporation process is evaluated. The deduced dependences of instantaneous fluxes can be applied for self-consistent calculations of time evolution of the evaporation processes of sessile droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Burger, R. Schmehl, K. Prommersberger, O. Schafer, R. Koch, S. Wittig (2003) Int. J. Heat Mass Transfer 46: 4403–4412.

    Article  CAS  Google Scholar 

  2. V. Dugas, J. Broutin, E. Souteyrand (2005) Langmuir 21: 9130–9136.

    Article  CAS  Google Scholar 

  3. Hyungmo Kim, Joonwon Kim (2010) J. Micromech. Microeng. 20: 045008

    Article  Google Scholar 

  4. S. Moosman, G.M. Homsy (1980) J. Colloid Interface Sci. 73: 212–223.

    Article  CAS  Google Scholar 

  5. F. Girard, M. Antoni, K. Sefiane (2008) Langmuir 24: 9207–9210.

    Article  CAS  Google Scholar 

  6. C. Bourges-Monnier, M.E.R. Shanahan (1995) Langmuir 11: 2820–2829.

    Article  CAS  Google Scholar 

  7. K. Sefiane, L. Tadrist (2006) Int. Commun. Heat Mass Transfer 33: 482–490.

    Article  Google Scholar 

  8. R.D. Deegan (2000) Phys. Rev. E 61: 475–485.

    CAS  Google Scholar 

  9. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten (2000) Phys. Rev. E 62: 756–765.

    CAS  Google Scholar 

  10. G. Guena, C. Poulard, M. Voue, J.D. Coninck, A.M. Cazabat (2006) Colloids Surfaces A 291: 191–196.

    Article  CAS  Google Scholar 

  11. R.G. Picknett, R. Bexon (1977) J. Colloid Interface Sci. 61: 336–350.

    Article  CAS  Google Scholar 

  12. F. Girard, M. Antoni, S. Faure, A. Steinchen (2006) Langmuir 22: 11085–11091.

    Article  CAS  Google Scholar 

  13. F. Girard, M. Antoni, S. Faure, A. Steinchen (2006) Microgr. Sci. Technol. XVIII-3/4: 42–46.

    Google Scholar 

  14. F. Girard, M. Antoni, S. Faure, A. Steinchen (2008) Colloids Surfaces A 323: 36–49.

    Article  CAS  Google Scholar 

  15. F. Girard, M. Antoni (2008) Langmuir 24: 11342-11345.

    Article  CAS  Google Scholar 

  16. H. Hu, R.G. Larson (2002) J. Phys. Chem. B 106: 1334–1344.

    Article  CAS  Google Scholar 

  17. H. Hu, R.G. Larson (2005) Langmuir, 21: 3963–3971.

    Article  CAS  Google Scholar 

  18. H. Hu, R.G. Larson (2005) Langmuir, 21: 3972–3980.

    Article  CAS  Google Scholar 

  19. W.D. Ristenpart, P.G. Kim, C. Domingues, J. Wan, H.A. Stone (2007) Physical Review Letters 99: 234502.

    Article  CAS  Google Scholar 

  20. R. Bhardwaj, X. Fang, D. Attinger (2009) New Journal of Physics 11: 075020.

    Article  Google Scholar 

  21. K.S. Lee, C.Y. Cheah, R.J. Copleston, V.M. Starov, K. Sefiane (2008) Colloids Surfaces A, 323: 63–72.

    Article  CAS  Google Scholar 

  22. K.P. Galvin (2005) Chem. Eng. Sci. 60: 4659–4660.

    Article  CAS  Google Scholar 

  23. F. Schonfeld, K.H. Graf, S. Hardt, H.J. Butt (2008) Int. J. Heat Mass Transfer 51: 3696–3699.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the European Union under Grant MULTIFLOW, FP7-ITN-2008-214919. The work of R.G. Rubio was supported in part by the Spanish Ministerio de Ciencia e Innovación through grant FIS2009-14008-C02-01, and by ESA through project MAP-AO-00-052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Semenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Semenov, S., Starov, V., Rubio, R.G., Velarde, M.G. (2011). Computer Simulations of Quasi-Steady Evaporation of Sessile Liquid Droplets. In: Starov, V., Procházka, K. (eds) Trends in Colloid and Interface Science XXIV. Progress in Colloid and Polymer Science, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19038-4_20

Download citation

Publish with us

Policies and ethics