Skip to main content

Macroscopic Models of Fluids with Microstructure

  • Conference paper
  • 416 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 35))

Abstract

Liquid crystals, fluids containing elastic particles, and polymer fluids, all exhibit non-trivial macroscopic behavior due to interactions occurring at micro/mesoscopic scales. Frequently the particles are small enough to be influenced by Brownian motion so the classical equations of mechanics must be coupled to appropriate Fokker Planck equation(s). Currently the coupling between the Fokker Planck equations modeling the microstructure and the macroscopic equations of mechanics is poorly understood. In this talk I’ll present some of the microscopic models appearing in the physics literature and the systems of pde’s that arise when they are coupled to the equations of mechanics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bedford. Theories of immiscible and structured mixtures.Int. J. Engng. Sci.,2(8):863–960, 1983.

    Article  MathSciNet  Google Scholar 

  2. J. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge—Kantorovich mass transfer problem.preprint,November, 1998.

    Google Scholar 

  3. A. N. Beris and B. J. Edwards.Thermodynamics of Flowing Systems. Number 36 in Oxford Engineering Science Series. Oxford, 1994.

    Google Scholar 

  4. G. Caginalp. An analysis of a phase field model of a free boundary.Archive for Rational Mechanics and Analysis,92:205–245, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Caginalp. Stefan and Hele—Shaw type models a asymptotic limits of phase field equations.Physics ReviewA, 39:887–896, 1989.

    MathSciNet  Google Scholar 

  6. P. G. de Gennes.The Physics Of Liquid Crystals.Oxford, 1974.

    Google Scholar 

  7. R. J. DiPerna and P. L. Lions. Ordinary differential equations, transport theory and Sobolev spaces.Inventiones Mathematicae,98:511–547, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Doi and S. F. Edwards.The Theory of Polymer Dynamics.Number 73 in Internatiional Series of Mongraphs on Physics. Oxford, 1986.

    Google Scholar 

  9. J. Ericksen. Conservation laws for liquid crystals.Trans. Soc. Rheol.,5:22 34, 1961.

    MathSciNet  Google Scholar 

  10. J. Ericksen. Nilpotent energies in liquid crystal theory.Archive for Rational Mechanics and Analysis,10:189 196, 1962.

    Google Scholar 

  11. G. Fix. Phase field methods for free boundary problems. In B. Fasano and M. Primicerio, editorsFree Boundary Problems,pages 580–589. Pitman, London, 1983.

    Google Scholar 

  12. M. G. Forest, Q. Wang, and H. Zhou. Exact banded patterns from a doi-marrucci-greco model of nematic liquid crystal polymers.Phys. Fluids,12(3):490–498, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. G. Forest, Q. Wang, and H. Zhou. Homogeneous pattern selection and director instabilities of nematic liquid crystal polymers induced by elongational flows.Phys. Fluids,12(3):490–498, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. C. Frank. On the theory of liquid crystals.Discuss. Faraday Soc.,28:19–28, 1958.

    Article  Google Scholar 

  15. M. Frechet. Sur la distance de deux lois de probabilite.Comptes Rendus Acad. Sci,244:689–692, 1957.

    MathSciNet  MATH  Google Scholar 

  16. R. Jordan, D. Kinderlehrer, and F. Otto. Dynamics of the Fokker-Planck equation. Phase Transitions to appear, 1999.

    Google Scholar 

  17. D. Kinderlehrer and N. J. Walkington. Approximation of parabolic equations using the Wasserstein metric.MMAN Math. Model. Numer. Anal.,33(4):837–852, 1999.

    Article  MathSciNet  Google Scholar 

  18. F. Leslie. Some constitutive equations for liquid crystals.Archive for Rational Mechanics and Analysis,28:265–283, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Leslie. Theory of flow phenomenum in liquid crystals. In W. Brown, editorThe Theory of Liquid Crystals,volume 4, pages 1–81, New York, 1979. Academic Press.

    Google Scholar 

  20. F. H. Lin and C. Liu. Nonparabolic dissipative systems, modeling the flow of liquid crystals.Comm. Pure Appl. Math.,XLVIII(5):501–537, 1995.

    Google Scholar 

  21. F. H. Lin and C. Liu. Global existence of solutions for the Ericksen Leslie-system.Archive for Rational Mechanics and Analysis,accepted, 1998.

    Google Scholar 

  22. P. L. Lions.Mathemaitcial Topics in Fluid MechanicsVolume 1:Incompressible Models. Oxford Press, Oxford, U.K., 1996.

    Google Scholar 

  23. C. Liu and N. J. Walkington. Approximation of liquid crystal flows.SIAM Journal on Numerical Analysis,37(3):725–741, Feb. 2000.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Liu and N. J. Walkington. An Eulerian description of fluids containing visco-elastic particles.Arch. Ration. Mech. Anal.,159(3):229–252, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Liu and N. J. Walkington. Mixed methods for the approximation of liquid crystal flows.Math. Modelling and Numer. Anal.,36(2):205–222, March/April 2002.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. W. Oseen. The theory of liquid crystals.Trans. Faraday Soc.,29:883–889, 1933.

    Article  Google Scholar 

  27. F. Otto. Dynamics of labyrinthine pattern formantion in magnetic fluids.Archive for Rational Mechanics and Analysis,141:63–103, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Otto. The geometry of dissipative evolution equations: the porous medium equation.Comm. Partial Differential Equations,26(1–2):101–174, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. M. Sonnet and E. G. Virga. Dynamics of dissipative ordered fluids.Phys. Rev. E,64(031705):1–10, 2001.

    Google Scholar 

  30. N. J. Walkington. Convergence of the discontinuous Galerkin method for discontinuous solutions.SIAM Journal on Numerical Analysis,submitted, June 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walkington, N.J. (2003). Macroscopic Models of Fluids with Microstructure. In: Bänsch, E. (eds) Challenges in Scientific Computing - CISC 2002. Lecture Notes in Computational Science and Engineering, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19014-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19014-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62406-3

  • Online ISBN: 978-3-642-19014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics