Skip to main content

The Roles of Cellular Factors in Retroviral Integration

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 281))

Abstract

A key early step in the retroviral life cycle is the integration of reverse-transcribed viral cDNA into a chromosome of an infected cell. The key protein player in retroviral integration is the viral integrase, which enters the cell as part of the virus. Although purified integrase protein is necessary and sufficient to perform the basic catalytic DNA breakage and joining steps of retroviral integration, a variety of normal cellular proteins have been implicated as playing important roles in establishing the integrated provirus in cells. This chapter reviews the roles of host cell factors that function during integrase catalysis, during the repair of the resulting DNA recombination intermediate, and by potentially guiding viral preintegration complexes to their chromosomal locations for cDNA integration. The potential to interfere with proper integration by blocking either integrase catalysis or the function of cellular integration cofactors is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adzuma K, Mizuuchi K (1989) Interaction of proteins located at a distance along DNA: Mechanism of target immunity in the Mu DNA strand-transfer reaction. Cell 57:41–47

    PubMed  CAS  Google Scholar 

  • Aiyar A, Hindmarsh P, Skalka AM, Leis J (1996) Concerted integration of linear retroviral DNA by the avian virus integrase in vitro: dependence on both long terminal repeat termini. J Virol 70:3571–3580

    PubMed  CAS  Google Scholar 

  • Baekelandt V, Claeys A, Cherepanov P, De Clercq E, Strooper BD, Nuttin B, Debyser Z (2000) DNA-dependent protein kinase is not required for efficient lentivirus integration. J Virol 74:11278–11285

    PubMed  CAS  Google Scholar 

  • Bell P, Montaner LJ, Maul GG (2001) Accumulation and intranuclear distribution of unintegrated human immunodeficiency virus type 1 DNA. J Virol 75:7683–7691

    PubMed  CAS  Google Scholar 

  • Benkirane M, Corbeau P, Housset V, Devaux C (1993) An antibody that binds the immunoglobulin CDR3-like region of the CD4 molecule inhibits transcription in HIV-infected T cells. EMBO J 12:4909–4921

    PubMed  CAS  Google Scholar 

  • Bor Y-C, Bushman FD, Orgel LE (1995) In vitro integration of human immunodeficiency virus type 1 cDNA into targets containing protein-induced bends. Proc Natl Acad Sci USA 92:10334–10338

    PubMed  CAS  Google Scholar 

  • Bowerman B, Brown PO, Bishop JM, Varmus HE (1989) A large nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 3:469–478

    PubMed  CAS  Google Scholar 

  • Brin E, Yi J, Skalka AM, Leis J (2000) Modeling the late steps in HIV-1 retroviral integrase catalyzed DNA integration. J Biol Chem 275:39287–39295

    PubMed  CAS  Google Scholar 

  • Brooun A, Richman DD, Kornbluth RS (2001) HIV-1 preintegration complexes preferentially integrate into longer target DNA molecules in solution as detected by a sensitive, polymerase chain reaction-based integration assay. J Biol Chem 276: 46946–46952

    PubMed  CAS  Google Scholar 

  • Brown PO (1997) Integration. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses, (New York, Cold Spring Harbor Press), pp 161–203

    Google Scholar 

  • Brown PO, Bowerman B, Varmus HE, Bishop, JM (1987) Correct integration of retroviral DNA in vitro. Cell 49:347–356

    PubMed  CAS  Google Scholar 

  • Brown PO, Bowerman B, Varmus HE, Bishop, JM (1989) Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc Natl Acad Sci USA 86:2525–2529

    PubMed  CAS  Google Scholar 

  • Bushman FD (1999) Host proteins in retroviral cDNA integration. Adv Virus Res 52:301–317

    PubMed  CAS  Google Scholar 

  • Bushman FD, Craigie R (1990) Sequence requirements for integration of Moloney murine leukemia virus DNA in vitro. J Virol 64:5645–5648

    PubMed  CAS  Google Scholar 

  • Bushman FD, Craigie R (1991) Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc Natl Acad Sci USA 88:1339–1343

    PubMed  CAS  Google Scholar 

  • Bushman FD, Fujiwara T, Craigie R (1990) Retroviral DNA integration directed by HIV integration protein in vivo. Science 249:1555–1558

    PubMed  CAS  Google Scholar 

  • Bustin M (2001) Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci 26:152–153

    PubMed  CAS  Google Scholar 

  • Bustin M, Reeves R (1996) High-mobility-group chromosomal proteins: Architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 54:35–100

    PubMed  CAS  Google Scholar 

  • Butler SL, Hansen MS, Bushman FD (2001) A quantitative assay for HIV DNA integration in vivo. Nat Med 7:631–634

    PubMed  CAS  Google Scholar 

  • Carteau S, Batson SC, Poljak L, Mouscadet J-F, Rocquigny H, Darlix J-L, Roques BP, Kas E, Auclair C (1997) Human immunodeficiency virus type 1 nucleocapsid protein specifically stimulates Mg2+-dependent DNA integration in vitro. J Virol 71:6225–6229

    PubMed  CAS  Google Scholar 

  • Carteau S, Gorelick RJ, Bushman FD (1999) Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: Stimulation by the viral nucleocapsid protein. J Virol 73:6670–6679

    PubMed  CAS  Google Scholar 

  • Carteau S, Hoffmann C, Bushman F (1998) Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target. J Virol 72:4005–4014

    PubMed  CAS  Google Scholar 

  • Chalker DL, Sandmeyer SB (1992) Ty3 integrates within the region of RNA polymerase III transcription initiation. Genes Dev 6:117–128

    PubMed  CAS  Google Scholar 

  • Chen H, Engelman A (1998) The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc Natl Acad Sci USA 95:15270–15274

    PubMed  CAS  Google Scholar 

  • Chen H, Engelman A (2000) Characterization of a replication-defective human immunodeficiency virus type 1 att site mutant that is blocked after the 3’ processing step of retroviral integration. J Virol 74:8188–8193

    PubMed  CAS  Google Scholar 

  • Chen H, Engelman A (2001) Asymmetric processing of human immunodeficiency virus type 1 cDNA in vivo: Implications for functional end coupling during the chemical steps of DNA transposition. Mol Cell Biol 21:6758–6767

    PubMed  CAS  Google Scholar 

  • Chow SA, Vincent KA, Ellison V, Brown PO (1992) Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255:723–726

    PubMed  CAS  Google Scholar 

  • Chun T-W, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, Kuo Y-H, Brookmeyer R, Zeiger MA, Bartich-Crovo, P Siliciano RF (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188

    PubMed  CAS  Google Scholar 

  • Coffin JM, Rosenberg N (1999) Retroviruses. Closing the joint. Nature 399:413–416

    PubMed  CAS  Google Scholar 

  • Courcoul M, Patience C, Rey F, Blanc D, Harmache A, Sire J, Vigne R, Spire B (1995) Peripheral blood mononuclear cells produce normal amounts of defective Vifhuman immunodeficiency virus type 1 particles which are restricted for the preretrotransposition steps. J Virol 69:2068–2074

    PubMed  CAS  Google Scholar 

  • Craigie R, Fujiwara T, Bushman F (1990) The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62:829–837

    PubMed  CAS  Google Scholar 

  • D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342:249–268

    PubMed  Google Scholar 

  • Daniel R, Katz RA, Skalka AM (1999) A role for DNA-PK in retroviral DNA integration. Science 284:644–647

    PubMed  CAS  Google Scholar 

  • Devine SE, Boeke JD (1996) Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev 10:620–633

    PubMed  CAS  Google Scholar 

  • Ellison V, Abrams H, Roe T, Lifson J, Brown PO (1990) Human immunodeficiency virus integration in a cell-free system. J Virol 64:2711–2715

    PubMed  CAS  Google Scholar 

  • Engelman A (1994) Most of the avian genome appears available for retroviral DNA integration. BioEssays 16:797–799

    PubMed  CAS  Google Scholar 

  • Engelman A (1999) In vivo analysis of retroviral integrase structure and function. Adv Virus Res 52:411–416

    PubMed  CAS  Google Scholar 

  • Espeseth AS, Felock P, Wolfe A, Witmer M, Grobler J, Anthony N, Egbertson M, Melamed JY, Young S, Hamill T, Cole JL, Hazuda DJ (2000) HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc Natl Acad Sci USA 97:11244–11249

    PubMed  CAS  Google Scholar 

  • Farnet CM, Bushman FD (1997) HIV-1 cDNA integration: requirement for HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88:483–492

    PubMed  CAS  Google Scholar 

  • Farnet CM, Haseltine WA (1990) Integration of human immunodeficiency virus type 1 DNA in vitro. Proc Natl Acad Sci USA 87:4164–4168

    PubMed  CAS  Google Scholar 

  • Farnet CM, Haseltine WA (1991) Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol 65:1910–1915

    PubMed  CAS  Google Scholar 

  • Fitzgerald ML, Vora AC, Zeh WG, Grandgenett DP (1992) Concerted integration of viral DNA by purified avian myeloblastosis virus integrase. J Virol 66:6257–6263

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Craigie R (1989) Integration of mini-retroviral DNA: A cell-free reaction for biochemical analysis of retroviral integration. Proc Natl Acad Sci USA 86:3065–3069

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Mizuuchi K (1988) Retroviral DNA integration: structure of an integration intermediate. Cell 54:497–504

    PubMed  CAS  Google Scholar 

  • Fulop GM, Bosma GC, Bosma MJ, Phillips RA (1988) Early B-cell precursors in scid mice: Normal numbers of cells transformable with Abelson murine leukemia virus (A-MuLV). Cell Immunol 113:192–201

    PubMed  CAS  Google Scholar 

  • Furukawa K (1999) LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2-chromatin interaction. J Cell Sci 112:2485–2492

    PubMed  CAS  Google Scholar 

  • Gaken JA, Tavassoli M, Gan SU, Vallian S, Giddings I, Darling DC, Galea-Lauri J, Thomas MG, Abedi H, Schreiber V, Menissier-de Murcia J, Collins MK, Shall S, Farzaneh F (1996) Efficient retroviral infection of mammalian cells is blocked by inhibition of poly(ADP-ribose) polymerase activity. J Virol 70:3992–4000

    PubMed  CAS  Google Scholar 

  • Gallay P, Hope T, Chin D, Trono D (1997) HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc Natl Acad Sci USA 94:9825–9830

    PubMed  CAS  Google Scholar 

  • Gallay P, Swingler S, Song J, Bushman F, Trono D (1995) HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 83:569–576

    PubMed  CAS  Google Scholar 

  • Goff SP (2001) Intracellular trafficking of retroviral genomes during the early phase of infection: viral exploitation of cellular pathways. J Gene Med 3:517–528

    PubMed  CAS  Google Scholar 

  • Goodzari G, Im G-J, Brackmann K, Grandgenett DP (1995) Concerted integration of retrovirus-like DNA by human immunodeficiency virus type 1 integrase. J Virol 69:6090–6097

    Google Scholar 

  • Goodzari G, Pursley M, Felock P, Witmer M, Hazuda D, Brackmann K, Grandgenett D (1999) Efficiency and fidelity of full-site integration reactions using recombinant simian immunodeficiency virus integrase. J Virol 73:8104–8111

    Google Scholar 

  • Ha HC, Juluri K, Zhou Y, Leung S, Hermankova M, Snyder SH (2001) Poly(ADP-ribose) polymerase-1 is required for efficient HIV-1 integration. Proc Natl Acad Sci USA 98:3364–3368

    PubMed  CAS  Google Scholar 

  • Hansen MST, Smith GJ, Kafri T, Molteni V, Siegel JS, Bushman FD (1999) Integration complexes derived from HIV vectors for rapid assays in vitro. Nature Biotech 17:578–582

    CAS  Google Scholar 

  • Haraguchi T, Koujin T, Segura-Totten M, Lee KK, Matsuoka Y, Yoneda Y, Wilson KL, Hiraoka Y (2001) BAF is required for emerin assembly into the reforming nuclear envelope. J Cell Sci 114:4575–4585

    PubMed  CAS  Google Scholar 

  • Harris D, Engelman A (2000) Both the structure and DNA binding function of the barrier-to-autointegration factor contribute to reconstitution of HIV type 1 integration in vitro. J Biol Chem 275:39671–39677

    PubMed  CAS  Google Scholar 

  • Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C, Miller MD (2000) Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287:646–650

    PubMed  CAS  Google Scholar 

  • Hindmarsh P, Leis J (1999) Reconstitution of concerted DNA integration with purified components. Adv Virus Res 52:397–410

    PubMed  CAS  Google Scholar 

  • Hindmarsh P, Ridky T, Reeves R, Andrake M, Skalka AM, Leis J (1999) HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virus concerted DNA integration in vitro. J Virol 73:2994–3003

    PubMed  CAS  Google Scholar 

  • Huth JR, Bewley CA, Nissen MS, Evans JNS, Reeves R, Gronenborn AM, Clore GM (1997) The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol 4:657–665

    PubMed  CAS  Google Scholar 

  • Ji H, Moore DP, Blomberg MA, Braiterman LT, Voytas DF, Natsoulis G, Boeke JD (1993) Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73:1–20

    Google Scholar 

  • Kalpana GV, Marmon S, Wang W, Crabtree GR, Goff SP (1994) Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266:2002–2006

    PubMed  CAS  Google Scholar 

  • Katz RA, Merkel G, Kulkosky J, Leis J, Skalka AM (1990) The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 63:87–95

    PubMed  CAS  Google Scholar 

  • Katzman M, Katz RA (1999) Substrate recognition by retroviral integrases. Adv Vir Res 52:371–395

    CAS  Google Scholar 

  • Katzman M, Katz RA, Skalka AM, Leis J (1989) The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol 63:5319–5327

    PubMed  CAS  Google Scholar 

  • Ke N, Voytas DF (1999) cDNA of the yeast retrotransposon Ty5 preferentially recombines with substrates in silent chromatin. Mol Cell Biol 19:484–494

    PubMed  CAS  Google Scholar 

  • Kirchner J, Connolly CM, Sandmeyer SB (1995) Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267:1488–1491

    PubMed  CAS  Google Scholar 

  • Kitamura Y, Lee YMH, Coffin JM (1992) Nonrandom integration of retroviral DNA in vitro: Effect of CpG methylation. Proc Natl Acad Sci USA 89:5532–5536

    PubMed  CAS  Google Scholar 

  • Lafemina RL, Callahan PL, Cordingley MG (1991) Substrate specificity of recombinant human immunodeficiency virus integrase protein. J Virol 65:5624–5630

    PubMed  CAS  Google Scholar 

  • Lapadat-Tapolsky M, De Rocquigny H, van Gent D, Roques B, Plasterk R, Darlix, J-L (1993) Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle. Nucleic Acids Res 21:831–839

    PubMed  CAS  Google Scholar 

  • Lee MS, Craigie R (1994) Protection of retroviral DNA from autointegration: involvement of a cellular factor. Proc Natl Acad Sci USA 91:9823–9827

    PubMed  CAS  Google Scholar 

  • Lee MS, Craigie R (1998) A previously unidentified host protein protects retroviral DNA from autointegration. Proc Natl Acad Sci USA 95:1528–1533

    PubMed  CAS  Google Scholar 

  • Lee YMH, Coffin JM (1991) Relationship of avian retrovirus DNA synthesis to integration in vitro. Mol Cell Biol 11:1419–1430

    PubMed  CAS  Google Scholar 

  • Lewis P, Hensel M, Emerman M (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 11:3053–3058

    PubMed  CAS  Google Scholar 

  • Li L, Farnet CM, Anderson WF, Bushman FD (1998) Modulation of activity of Moloney murine leukemia virus preintegration complexes by host factors in vitro. J Virol 72:2125–2131

    PubMed  CAS  Google Scholar 

  • Li L, Olvera JM, Yoder KE, Mitchell RS, Butler SL, Lieber M, Martin SL, Bushman FD (2001) Role of the non-homologous end joining pathway in the early steps of retroviral infection. EMBO J 20:3272–3281

    PubMed  CAS  Google Scholar 

  • Li L, Yoder K, Hansen MST, Olvera J, Miller MD, Bushman FD (2000) Retroviral cDNA integration: Stimulation by HMG I family proteins. J Virol 74:10965–10974

    PubMed  CAS  Google Scholar 

  • McCord M, Stahl SJ, Mueser TC, Hyde CC, Vora AC, Grandgenett DP (1998) Purification of recombinant Rous sarcoma virus integrase possessing physical and catalytic properties similar to virion-derived integrase. Protein Expr Purif 14:167–177

    PubMed  CAS  Google Scholar 

  • Mighell AJ, Markham AF, Robinson PA (1997) Alu sequences. FEBS Lett 417:1–5

    PubMed  CAS  Google Scholar 

  • Miller MD, Farnet CM, Bushman FD (1997) Human immunodeficiency preintegration complexes: studies of organization and composition. J Virol 71:5382–5390

    PubMed  CAS  Google Scholar 

  • Pauza CD (1990) Two bases are deleted from the termini of HIV-1 linear DNA during integrative recombination. Virology 179:886–889

    PubMed  CAS  Google Scholar 

  • Pruss D, Bushman FD, Wolffe AP (1994a) Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc Natl Acad Sci USA 91:5913–5917

    PubMed  CAS  Google Scholar 

  • Pruss D, Reeves R, Bushman FD, Wolffe AP (1994b) The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J Biol Chem 269:25031–25041

    PubMed  CAS  Google Scholar 

  • Pryciak PM, Sil A, Varmus HE (1992) Retroviral integration into minichromosomes in vitro. EMBO J 11:291–303

    PubMed  CAS  Google Scholar 

  • Pryciak PM, Varmus HE (1992) Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69:769–780

    PubMed  CAS  Google Scholar 

  • Roe T, Chow SA, Brown PO (1997) 3’-End processing and kinetics of 5’-end joining during retroviral integration in vivo. J Virol 71:1334–1340

    PubMed  CAS  Google Scholar 

  • Rohdewohld H, Weiher H, Reik W, Jaenisch R, Breindl M (1987) Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J Virol 61:336–343

    PubMed  CAS  Google Scholar 

  • Roth MJ, Schwartzberg PL, Goff SP (1989) Structure of the termini of DNA intermediates in the integration of retroviral DNA: dependence on IN function and terminal DNA sequence. Cell 58:47–54

    PubMed  CAS  Google Scholar 

  • Scherdin U, Rhodes K, Breindl M (1990) Transcriptionally active genome regions are preferred targets for retrovirus integration. J Virol 64:907–912

    PubMed  CAS  Google Scholar 

  • Sherman PA, Fyfe JA (1990) Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity. Proc Natl Acad Sci USA 87:5119–5123

    PubMed  CAS  Google Scholar 

  • Sinha S, Pursley MH, Grandgenett DP (2002) Efficient concerted integration by recombinant human immunodeficiency virus type 1 integrase without cellular or viral cofactors. J Virol 76:3105–3113

    PubMed  CAS  Google Scholar 

  • Smith GCM, Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13:916–934

    PubMed  CAS  Google Scholar 

  • Sonza S, Maerz A, Deacon N, Meanger J, Mills J, Crowe S (1996) Human immunodeficiency virus type 1 replication is blocked prior to reverse transcription and integration in freshly isolated peripheral blood monocytes. J Virol 70:3863–3869

    PubMed  CAS  Google Scholar 

  • Sudarsanam P, Winston F (2000) The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet 16:345–351

    PubMed  CAS  Google Scholar 

  • Turelli P, Doucas V, Craig E, Mangeat B, Klages N, Evans R, Kalpana G, Trono D (2001) Cytoplasmic recruitment of Ini1 and PML on incoming HIV preintegration complexes: Interference with early steps of viral replication. Mol Cell 7:1245–1254

    PubMed  CAS  Google Scholar 

  • Tuschl T (2002) Expanding small RNA interference. Nat Biotech 20:446–448

    CAS  Google Scholar 

  • Vandegraaff N, Kumar R, Burrell CJ, Li P (2001) Kinetics of human immunodeficiency virus type 1 (HIV) DNA integration in acutely infected cells as determined using a novel assay for detection of integrated HIV DNA. J Virol 75:11253–11260

    PubMed  CAS  Google Scholar 

  • Vijaya S, Steffen DL, Robinson HL (1986) Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J Virol 60:683–692

    PubMed  CAS  Google Scholar 

  • Vora AC, Grandgenett DP (1995) Assembly and catalytic properties of retrovirus integrase-DNA complexes capable of efficiently performing concerted integration. J Virol 69:7483–7488

    PubMed  CAS  Google Scholar 

  • Vora AC, McCord M, Fitzgerald ML, Inman RB, Grandgenett DP (1994) Efficient concerted integration of retrovirus-like DNA by avian myeloblastosis virus integrase. Nucleic Acids Res 22:4454–4461

    PubMed  CAS  Google Scholar 

  • Wang W, Cote J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, Workman JL, Crab tree GR (1996) Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J 15:5370–5382

    PubMed  CAS  Google Scholar 

  • Wei S-Q, Mizuuchi K, Craigie R (1997) A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J 16:7511–7520

    PubMed  CAS  Google Scholar 

  • Wei S-Q, Mizuuchi K, Craigie R (1998) Footprints on the viral DNA ends in Moloney murine leukemia virus preintegration complexes reflect a specific association with integrase. Proc Natl Acad Sci USA 95:10535–10540

    PubMed  CAS  Google Scholar 

  • Weidhaas JB, Angelichio EL, Fenner S, Coffin JM (2000) Relationship between retroviral DNA integration and gene expression. J Virol 74:8382–8389

    PubMed  CAS  Google Scholar 

  • Withers-Ward ES, Kitamura Y, Barnes JP, Coffin JM. (1994) Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev 8:1473–1487

    PubMed  CAS  Google Scholar 

  • Xie W, Gai X, Zhu Y, Zappulla DC, Sternglanz R, Voytas DF (2001) Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p. Mol Cell Biol 21:6606–6614

    PubMed  CAS  Google Scholar 

  • Yoder KE, Bushman FD (2000) Repair of gaps in retroviral DNA integration intermediates. J Virol 74:11191–11200

    PubMed  CAS  Google Scholar 

  • Yung E, Sorin M, Pal A, Craig E, Morozov A, Delattre O, Kappes J, Kalpana GV (2001) Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1. Nat Med 7:920–926

    PubMed  CAS  Google Scholar 

  • Zheng R, Ghirlando R, Lee MS, Mizuuchi K, Krause M, Craigie R (2000) Barrier-toautointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc Natl Acad Sci USA 97:8997–9002

    PubMed  CAS  Google Scholar 

  • Zou S, Voytas DF (1997) Silent chromatin determines target preferences of the Saccharomyces retrotransposon Ty5. Proc Natl Acad Sci USA 94:7412–7416

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelman, A. (2003). The Roles of Cellular Factors in Retroviral Integration. In: Young, J.A.T. (eds) Cellular Factors Involved in Early Steps of Retroviral Replication. Current Topics in Microbiology and Immunology, vol 281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19012-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19012-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62405-6

  • Online ISBN: 978-3-642-19012-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics