Skip to main content

Efficient Density Clustering Using Basin Spanning Trees

  • Conference paper
Between Data Science and Applied Data Analysis

Abstract

We present a method to cluster multivariate data according to their density (or any other target function): all observations lying within one “basin” or sitting on the slopes of one “mountain” are assigned to one cluster. The method exploits a neighborhood structure given by the Delaunay triangulation or a k-nearest neighbor graph, and each cluster is given in terms of a basin spanning tree. The root of each basin spanning tree corresponds to a local density maximum, and the trees can be used for simplified representation and visualization of the observations. We compare the accuracy and speed of different approximations, apply the method to real-world data sets and compare its computational complexity to published algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BARBER, C. B., DOBKIN, D. P., and HUHDANPAA, H. (1996): The quickhull algorithm for convex hulls. ACM Trans. Math. Soft., 22(4):469–483. http://www.geom.umn.edu/locate/qhull.

    Article  MathSciNet  MATH  Google Scholar 

  • BOCK, H.H. (1974): Automatische Klassifikation. Vandenhoeck & Ruprecht, Gottingen.

    MATH  Google Scholar 

  • CHENG, Y. (1995): Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:790–799.

    Article  Google Scholar 

  • DOMENICONI, C. and GUNOPULOS, D. (2001): An efficient approach for approximating multi-dimensional range queries and nearest neighbor classification in large datasets. In Proc. 18th International Conf. on Machine Learning, pages 98–105, San Francisco. Morgan Kaufmann.

    Google Scholar 

  • FOWLKES, E. B. and MALLOWS, C. L. (1983): A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78:553–569.

    Article  MATH  Google Scholar 

  • ESTER, M., KRIEGEL, H.-P., SANDER, J. and XIAOWEI XU (1996): A densitybased algorithm for discovering clusters in large spatial databases with noise. In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages 226–231, Portland. AAAI Press.

    Google Scholar 

  • GODTLIEBSEN, F., MARRON, J. S., and CHAUD (2002): Significance in scale space for bivariate density estimation. Journal of Computational and Graphical Statistics, 11:1–21.

    Article  MathSciNet  Google Scholar 

  • HAMPRECHT, F. A., PETER, C., DAURA, X., THIEL, W., and VAN GUNSTEREN, W. F. (2001): A strategy for analysis of (molecular) equilibrium simulations: configuration space density estimation, clustering and visualization. J. Chem. Phys., 114:2079–2089.

    Article  Google Scholar 

  • HINNEBURG, A. and KEIM, D. A. (1998): An efficient approach to clustering in multimedia databases with noise. In Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining (KDD 98), pages 58–65, New York. AAAI Press.

    Google Scholar 

  • KOWALEWSKI, F. (1995): A gradient procedure for determining clusters of relatively high point density. Pattern Recognition, 28:1973–1984.

    Article  Google Scholar 

  • MERKWIRTH, C., PARLITZ, U., and LAUTERBORN, W. (2000): Fast exact and approximate nearest neighbor searching for nonlinear signal processing. Physical Review E, 62:2089–2097.

    Article  Google Scholar 

  • SCOTT, D. W. (1992): Multivariate Density Estimation. Wiley, New York.

    Book  MATH  Google Scholar 

  • SILVERMAN, B. W. (1986): Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall.

    Google Scholar 

  • WEHRENS, R., SIMONETTI, A. W., and BUYDENS, L. M. C. (2001): Mixture modelling of medical magnetic resonance data. Journal of Chemometrics, 16:1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hader, S., Hamprecht, F.A. (2003). Efficient Density Clustering Using Basin Spanning Trees. In: Schader, M., Gaul, W., Vichi, M. (eds) Between Data Science and Applied Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18991-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18991-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40354-8

  • Online ISBN: 978-3-642-18991-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics