Skip to main content

Entwicklung von Tabletten (Direktverpressung)

  • Chapter
Arzneiformen-Entwicklung

Part of the book series: Springer-Lehrbuch ((SLB))

  • 274 Accesses

Zusammenfassung

Tabletten werden durch Verpressen eines konstanten Volumens von Substanzteilchen hergestellt. Die Teilchen bestehen aus einem oder mehreren Wirkstoffen mit oder ohne Zusatz von Füll-, Binde-, Spreng-, Gleit- und/oder Schmiermitteln sowie von Substanzen, die das Verhalten der Tabletten im Verdauungstrakt bestimmen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Wiegel S ( 1996) Systematik der Entwicklung direktverpreßter Tabletten. Dissertation Universität Heidelberg

    Google Scholar 

  2. Ahlneck C, Zografi G (1990) The molecular basis of moisture effects on the physical and chemical stability of drugs in the solid state. Int J Pharm 62: 87–95

    CAS  Google Scholar 

  3. Antequera MVV, Munoz-Ruiz A, Perales MCM, Ballesteros MRJ-C (1994) Effect of the addition of three disintegrants on the tabletability of calcium-phosphate based materials. Eur J Pharm Biopharm 40: 344–347

    Google Scholar 

  4. Armstrong NA, Palvrey L (1989) The effect of machine speed on the consolidation of four directly compressible tablet diluents. J Pharm Pharmacol 41:149–151

    PubMed  CAS  Google Scholar 

  5. Association American Pharmaceutical, Britain, The Pharmaceutical Society of Great (1986) Handbook of Pharmaceutical Excipients. The Pharmaceutical Press, London

    Google Scholar 

  6. Bangudu AB, Pilpel N (1985) Effects of composition moisture and stearic acid on the plasto-elasticity and tableting of paracetamol-microcristalline cellulose mixtures. J Pharm Pharmacol 37: 289–293

    PubMed  CAS  Google Scholar 

  7. Bauer-Brandl A (1993) Hochleistungsrundlaufpressen. Pharm Ind 55: 404

    Google Scholar 

  8. Bermann J, Planchard JA (1995) Blend uniformity and unit dosage sampling. Drug Dev Ind Phar 21: 1257–1283

    Google Scholar 

  9. Bertoni M, Ferrari F, Bonferoni MC, Rossi S, Caramella C (1995) Functionality tests for tablet disintegrants. the case of sodium carboxymethylcelluloses. Pharm Technol: 17–24

    Google Scholar 

  10. Bogs U, Lenhardt E ( 1971 ) Zur Kenntnis thermischer Vorgänge beim Tablettenpressen. Pharm Ind 33: 850–854

    CAS  Google Scholar 

  11. Bolhuis GK, Arends-Scholte AW, Stuut GJ, de Vries JA (1994) disintegration efficiency of sodium starch glycolates prepared from native starches. Eur J Pharm Biopharm 40: 317–320

    CAS  Google Scholar 

  12. Bolhuis GK, de Jong SW, Lerk CF (1987) The effect of magnesium stearate admixing in different types of laboratory and industrial mixers on tablet crushing strength. Drug Dev Ind Pharm 13:1547–1567

    CAS  Google Scholar 

  13. Bolhuis GK, Reichman G, Lerk CF, van Kamp HV, Zuurman K (1985) Evaluation of Anhydrous a-Lactose a New Excipient in Direct Compression. Drug Dev Ind Pharm 11: 1657–1681

    CAS  Google Scholar 

  14. Bolhuis GK, Smallenbroek AJ, Lerk CF (1981) Interaction of tablet disintegrants and magnesium stearate duringmixing i: effect on tablet disintegration. J Pharm Sci 70: 1328–1330

    PubMed  CAS  Google Scholar 

  15. Bolhuis GK, van Kamp HV, Lerk CF, Sessink FGM (1982) On the mechanism of action of modern disintegrants. Acta Pharm Technol 28:111–114

    CAS  Google Scholar 

  16. Bose M, Sakr A, Warner A (1993) Effect of lubricants on the characteristics of triamteren /hydrochlorothiazide directly compressed tablets. Pharm Ind 55: 519–522

    CAS  Google Scholar 

  17. Bossert J, Stamm A (1980) Effect of mixing on the lubrication of crystalline lactose by magnesium stearate. Drug Dev Ind Pharm 6: 573–589

    CAS  Google Scholar 

  18. Botzolakis JE, Augsburger LL (1988) Disintegrating agents in hard gelatine capsules, part II: swelling efficiency. Drug Dev Ind Pharm 14: 1235–1248

    CAS  Google Scholar 

  19. Callahan JC, Cleary GW, Elefant M, Kaplan G, Kensler T, Nash RA (1982) Equilibrium moisture content of pharmaceutical excipients. Drug Dev Ind Pharm 8: 355–369

    CAS  Google Scholar 

  20. Caramella C, Colombo P, Conte U, La Manna A (1987) Tablet disintegration update: the dynamic approach. Drug Dev Ind Pharm 13: 2111–2145

    CAS  Google Scholar 

  21. Caramella C, Ferrari F, Bonferoni MC, Ronchi M (1990) Disintegrants in solid dosage forms. Drug Dev Ind Pharm 16: 2561–2577

    CAS  Google Scholar 

  22. Carstensen JT, Chan PL Relation between Particle Size and Repose Angles of PowdersPowder Technol 15:129–131 (1976)

    Google Scholar 

  23. Carstensen JT, Erteil C (1990) Physical and chemical properties of calcium phosphates for solid state pharmaceutical formulations. Drug Dev Ind Pharm 16: 1121–1133

    CAS  Google Scholar 

  24. Carstensen JT, Geoffroy JM, Dellamonica C (1990) Compression characteristics of binary mixtures. Powder Technol 62:119–124

    CAS  Google Scholar 

  25. Carstensen JT, Rhodes CT (1984) Optimization of preblending in random mixing. Drug Dev Ind Pharm 10:1017–1024

    Google Scholar 

  26. Casahoursat L, Lemagnen G, Larrouture D (1989) Dependence of compression phase on elasticity of the material. Drug Dev Ind Pharm 15: 2213–2226

    Google Scholar 

  27. Castillo-Rubio S, Villafuerte-Robles L (1995) Compactability of binary mixtures of pharmaceutical powders. Eur J Pharm Biopharm 41: 309–314

    Google Scholar 

  28. Celik M, Marshall K (1989) Use of a compaction simulator system in tabletting research. Drug Dev Ind Pharm 15: 759–800

    CAS  Google Scholar 

  29. Celik M, Okutgen E (1995) Compaction data bank (1) batch-to-batch plant-to-plant and manufacture-to-manufacture consistency of microcrystalline cellulose and dicalcium phosphate. Proc 1st World Meeting APGI/APV Budapest 9-11 May: 163–164

    Google Scholar 

  30. Chang R-K, Badawy S, Hussain MA, Buehler JDA (1995) Comparison of free-flowing segregating and non-free-flowing cohesive mixing systems in assessing the performance of a modified v-shaped solids mixer. Drug Dev Ind Pharm 21: 361–368

    CAS  Google Scholar 

  31. Chowhan ZT (1993) Excipients and their functionality in drug product development. Pharm Technol 9: 72–82

    Google Scholar 

  32. Danjo K, Erteil C, Carstensen JT (1989) Effect of compaction speed and die diameter on athy-heckel and hardness parameters of compressed tablets. Drug Dev Ind Pharm 15:1–10

    Google Scholar 

  33. Dawoodbhai S, Rhodes CT (1989) The effect of moisture on powder flow and on compaction and physical stability. Drug Dev Ind Pharm 15:1577–1600

    CAS  Google Scholar 

  34. de Haan P, Kroon C, Sam AP (1990) Decomposition and stabilization of the tablet excipient calcium hydrogenphosphat dihydrate. Drug Dev Ind Pharm 16: 2031–2055

    Google Scholar 

  35. de Villiers MM, van der Watt JG (1989) Interactive mixing between agglomerated drug particles and coarse carrier particles. Drug Dev Ind Pharm 15: 2055–2061

    Google Scholar 

  36. Djuric M, Jovanovic M, Djuric Z (1986) Effect of dioctylsodiumsulphosuccinat (DSS) on tablet disintegration. Pharmazie 41: 816–817

    PubMed  CAS  Google Scholar 

  37. Doelker E, Mordier D, Iten H, Humbert-Droz P (1987) Comparative Tableting Properties of Sixteen Microcrystalline Celluloses. Drug Dev Ind Pharm 13:1847–1875

    CAS  Google Scholar 

  38. Doldán C, Souto C, Martínez-Pacheco R, Gómez-Amoza JL, Concheiro A (1995) Dicalcium Phosphate Dihydrate and Anhydrous Dicalcium Phosphate for Direct Compression: A Comparative Study. Int J Pharm 124: 69–74

    Google Scholar 

  39. Egermann H (1982) Definition and Conversion of the Mean Particle Diameter Referring to Mixing Homogeneity. Powder Technol 31: 231–232

    Google Scholar 

  40. Egermann H (1991) Mischen von Feststoffen. Hagers Handbuch der Pharmazeutischen Praxis. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  41. Egermann H (1979) Studien zum Mischverhalten kohäsiver Pulver. Pharm Ind 41: 285–289

    Google Scholar 

  42. Eriksson M, Alderborn G (1995) The effect of particle fragmentation and deformation on the interparticulate bond formation process during powder compaction. Pharm Res 12: 1031–1039

    PubMed  CAS  Google Scholar 

  43. Faroongsarng D, Peck GE (1994) Surface morphology study of solid pow-ders evaluated by particle size distributi-on and nitrogen adsorption. Drug Dev Ind Pharm 20: 2353–2367

    CAS  Google Scholar 

  44. Fassihi AR, Falamarzian M, Parker MS (1980) The influence of the rate of production of tablets at constant pressure upon their physical properties. Drug Dev Ind Pharm 6: 441–450

    Google Scholar 

  45. Fassihi AR, Kanfer I (1986) Effect of compressibility and powder flow properties on tablet weight variation. Drug Dev Ind Pharm 12:1947–1966

    CAS  Google Scholar 

  46. Fell JT, Newton JM (1970) Prediction of the tensile strength of tablets. J Pharm Pharmacol 22:247–248

    PubMed  CAS  Google Scholar 

  47. Fiedler HP (1989) Lexikon der Hilfsstoffe für Pharmazie Kosmetik und angrenzende Gebiete. Editio Cantor, Aulendorf

    Google Scholar 

  48. Filbry (1986) Homogenität des Druckes in Tabletten verschiedener Wölbung und ihr Einfluß auf errechnete und gemessene Parameter der Verdichtung verschiedener Substanzen. Dissertation Institut für Pharmazeutische Chemie, Abt Pharmazeutische Technologie Hamburg

    Google Scholar 

  49. Fisher DG, Rowe RC (1976) The adhesion of film coatings to tablet surfaces-instrumentation and preliminary evaluation. J Pharm Pharmac 28: 886–889

    CAS  Google Scholar 

  50. Führer C, Bayraktar-Alpmen G, Schmidt M (1977) Untersuchungen von Kraft-Weg-Diagrammen bei der Tablettierung von Pulvermischungen. Acta Pharm Technol 23: 215–224

    Google Scholar 

  51. Gabaude CM, Guillot M, Gautier J-C (1999) Effects of true density compacted mass compression speed and punch deformation on the mean yield pressure. Journal of Pharmaceutical Sciences 88: 22–28

    Google Scholar 

  52. Garr JSM, Rubinstein MH (1991) An investigation into the capping of paracetamol at increasing speeds of compression. Int J Pharm 72:117–122

    CAS  Google Scholar 

  53. Garr JSM, Rubinstein MH (1991) Compaction properties of a cellulose-lactose direct compression excipient. Pharm Technol Int 15(7): 24–27

    Google Scholar 

  54. Garr JSM, Rubinstein MH (1992) Consolidation and compaction characteristics of a three-component particulate system. Int J Pharm 82: 71–77

    CAS  Google Scholar 

  55. Glombitza BW, Schmidt PC (1995) Surface acidity of solid pharmaceutical excipients-ii effect of the surface acidity on the decomposition rate of acetylsalicylic acid. Eur J Pharm Biopharm 41: 114–119

    CAS  Google Scholar 

  56. Gordon MS, Chowhan ZT (1990) The effect of aging on disintegrant efficiency in direct compression tablets with varied solubility and hygroscopicity in terms of dissolution. Drug Dev Ind Pharm 16: 437–447

    CAS  Google Scholar 

  57. Graf E, Ghanem AH, Mahmoud H (1982) Studies on the direct compression of pharmaceuticals. Part 8: role of liquid penetration and humudity on tablet formulations. Pharm Ind 44: 200–203

    CAS  Google Scholar 

  58. Graf E, Sakr A, Gaftiteanu E (1979) Studies on the direct compression of pharmaceuticals. 3. Ephedrine tablets, a) Effect of excipients and compression pressure on the characteristics of directly compressed ephedrine-HCl tablets. Pharm Ind 41: 884–886

    CAS  Google Scholar 

  59. Hauer B, Remmele T, Sucker H (1993) Gezieltes Entwickeln und Optimieren von Kapselformulierungen mit einer instrumentierten Dosierröhrchen-Kapselfüllmaschine; 2. Mitteilung: Grundlagen der Optimierungsstrategie. Pharm Ind 55: 780–786

    CAS  Google Scholar 

  60. Hedge RP, Rheingold JL, Welch S, Rhodes CT (1985) Studies of powder flow using a recording powder flowmeter and measurement of the dynamic angle of repose. J Pharm Sci 74: 11–15

    Google Scholar 

  61. Heng PWS, Wan LSC, Ang TSH (1990) Role of surfactant on drug release from tablets, drug dev ind pharm 16: 951–962

    CAS  Google Scholar 

  62. Hoblitzell JR, Rhodes CT (1990) Instrumented tablet press studies on the effect of some formulation and processing variables on the compaction process. Drug Dev Ind Pharm 16: 469–507

    CAS  Google Scholar 

  63. Hoblitzell JR, Rhodes CT (1986) Preliminary investigations on the parity of tablet compression data obtained from different instrumented tablet presses. Drug Dev Ind Pharm 12: 507–525

    CAS  Google Scholar 

  64. Holman LE (1991) The Compressibility of Pharmaceutical Particulate Systems An Illustration of Percolation. Int J Pharm 71: 81–94

    CAS  Google Scholar 

  65. Holman LE, Leuenberger H (1990) The effect of varying the composition of binary powder mixtures and compacts on their properties: A percolation phenomenon. Powder Technol 60: 249–258

    CAS  Google Scholar 

  66. Hölzer AW, Sjögren J (1981) Evaluation of some lubricants by the comparison of friction coefficients and tablet properties. Acta Pharm Suec 18:139–148

    PubMed  Google Scholar 

  67. Huber GMW, Becker R, Müller RH (1994) Zusammenhang zwischen Fließeigenschaften und Oberfläche pulverförmiger Rezepturen. Pharm Ind 56: 389–392

    CAS  Google Scholar 

  68. Hwang R, Peck GR (2001) A systematic evaluation of the compression of tablets characteristics of microcristalline cellulose. Pharmaceutical Technology (3): 112–132

    Google Scholar 

  69. Hwang R, Peck GR (2001) A systematic evaluation of the compression of tablets lactose microcristalline cellulose and dibasic calcium phosphate. Pharmaceutical Technology (3): 55–81

    Google Scholar 

  70. Ibrahim H, Sallam E, Takieddin M, Shamat MA (1988) Dissolution characteristics of interactive powder mixtures part one: Effect of solubility and partcle size of excipients. Drug Dev Ind Phar 14:1249–1276

    CAS  Google Scholar 

  71. Illkka J, Paronen P (1993) Prediction of the compression behaviour of powder mixtures by the Heckel equation. Int J Pharm 94: 181–187

    Google Scholar 

  72. Imbert C, Tchoreloff BL, Couarraze G (1997) Indices of tableting performance and application of percolation theory to powder compaction. European Journal of Pharmaceutics and Biopharmaceutics 44: 273–282

    CAS  Google Scholar 

  73. Kikuta J, Kitamori N (1994) Effect of mixing time on the lubricating properties of magnesium stearate and the final characteristics of the compressed tablets. Drug Dev Ind Pharm 20(3): 343–356

    CAS  Google Scholar 

  74. Jarosz PJL, Parrott E (1984) Effect of lubricants on tensile strengths of tablets. Drug Dev Ind Pharm 10: 259–274

    CAS  Google Scholar 

  75. Jetzer WE (1986) Compaction characteristics of binary mixtures. Int J Pharm 31: 201–207

    CAS  Google Scholar 

  76. Johansson ME, Nicklasson M (1986) Investigation of the film formation of magnesium stearate by applying a flow-through dissolution technique. J Pharm Sci 38: 51–54

    CAS  Google Scholar 

  77. Johnson MCR (1972) Particle Size Distribution of the Active Ingerdient for Solid Dosage Forms of Low Dosage. Pharm Acta Helv 47: 546–559

    PubMed  CAS  Google Scholar 

  78. Jones TM (1978) Prefomulation studies to predict the compaction properties of materials used in tablets and capsules. Acta Pharm Technol 6:141–159

    Google Scholar 

  79. Jovanovic M, Samardzic Z, Djuric Z, Mihailovic D, Milanovic V, Srentic M, Rudez B (1987) An evaluation of the sodium laurylsulphate as tablet adjuvant. Pharmazie 42: 741–742

    PubMed  CAS  Google Scholar 

  80. Jvaid KA (1983) Disintegration and dissolution parameters of compressed tablets prepared by direct compression-wet granulation process and compression of granulation of both sections. Drug Dev Ind Pharm 9: 1061–1072

    Google Scholar 

  81. Kahn KA, Rhodes CT (1972) Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm Acta Helv 47: 594–607

    Google Scholar 

  82. Karehill PG, Nyström C (1990) Studies on direct compression of tablets xxii investigation of strength increase upon ageing and bonding mechanisms for some plastically deforming materials. Int J Pharm 64: 27–34

    CAS  Google Scholar 

  83. Khan KA, Musikabhumma P, Rubinstein MH (1983) The effect of mixing time of magnesium stearate on the tableting properties of dried microcristalline cellulose. Pharm Acta Helv 58:109–111

    PubMed  CAS  Google Scholar 

  84. Khan KA, Rhodes CT (1975) Disintegration properties of calcium phosphat dibasic dihydrate tablets. J Pharm Sci 64: 166–168

    PubMed  CAS  Google Scholar 

  85. Kikuta J, Kitamori N (1985) Frictional properties of tablet lubricants. Drug Dev Ind Pharm 11:845–854

    CAS  Google Scholar 

  86. Koch H (1990) Bewertung der Presseigenschaften pharmazeutischer Wirk-und Hilfsstoffe anhand von Presskraft-Zeit-Kurven. Institut für Pharmazeutische Technologie der Philipps-Universtität Marburg/Lahn

    Google Scholar 

  87. Krycer I, Pope DG, Hersey JA (1982) An evaluation of the techniques employed to investigate powder compaction behaviour. Int J Pharm 12:113–134

    CAS  Google Scholar 

  88. Kuentz M, Leuenberger H (2000) A new theoretical approach to tablet strength of a binary mixture consisting of a well and a poorly compactable substance. European Journal of Pharmaceutics and Biopharmaceutics 49: 151–159

    PubMed  CAS  Google Scholar 

  89. Lahdenpää E, Niskanen M, Yliruusi J (1997) Crushing strength disintegration time and weight variation of tablets compressed from three Avicel-PH grades and their mixtures. European Journal of Pharmaceutics and Biopharmaceutics 43 S315–322

    Google Scholar 

  90. Laich T, Hundt T, Kissel T (1995) Experimentelle Untersuchungen zur Reibungsarbeit beim Tablettieren mit Hilfe der axialen Matrizenwandkraftmessung. Pharm Ind 57: 686–693

    CAS  Google Scholar 

  91. Langenbucher F (1972) Statistical analysis of the USP XVIII content uniformity sampling plan for tablets. Pharm Acta Helv 47: 142–152

    PubMed  CAS  Google Scholar 

  92. Lerk CF, Bolhuis GK (1977) Interaction of lubricants and colloidal silicea during mixing with excipientsii its effect on wettability and dissolution velocity. Pharm Acta Helv 52: 39–44

    PubMed  CAS  Google Scholar 

  93. Lerk CF, Bolhuis GK, Smallenbroek AJ, Zuurman K (1982) Interaction of tablet disintegrants and magnesium stearate during mixingii effect on dissolution rate. Pharm Acta Helv 57: 282–286

    PubMed  CAS  Google Scholar 

  94. Lerk CF, Bolhuis GK, Smedema SS (1977) Interaction of lubricants and colloidal silicea during mixing with excipientsi its effect on tableting. Pharm Acta Helv 52: 33–39

    PubMed  CAS  Google Scholar 

  95. Leuenberger H, Bonny JD, Lerk CF, Vromans H (1989) Relation between crushing strength and internal specific surface of lactose compacts. Int J Pharm 52: 91–100

    CAS  Google Scholar 

  96. Leuenberger H, Rohera BD (1986) Fundamentals of powder compression. I. The compactability and compressibility of pharmaceutical powders. Pharm Res 3:12–22

    CAS  Google Scholar 

  97. Leuenberger H, Rohera BD (1986) Fundamentals of powder compression. II. The compression of binary powder mixtures. Pharm Res 3: 65–74

    Google Scholar 

  98. Levy G, Gumtow RH (1963) Effect of certain tablet formulation factors on dissolution rate of the active ingredient III. J Pharm Sci 52: 1139–1144

    PubMed  CAS  Google Scholar 

  99. Lieberman HA, Lachman L (1980) Pharmaceutical Dosage Forms. Tablets 1. Marcel Dekker, New York, Basel

    Google Scholar 

  100. Liebner E (1990) Über die Rückdehnung von Tabletten aus Cellulosen-Strukturrelevante physikalische Eigenschaften während Lagerung bei verschiedenen relativen Feuchten. Dissertation Institut für Pharmazeutische Chemie, Abt. für Pharmazeutische Technologie, Hamburg

    Google Scholar 

  101. Lindberg N-O, Hansson E, Holmquist B (1987) The granulation of a tablet formulation in a high-speed mixer diosna p25 influence on intragranular porosity and liquid saturation. Drug Dev Ind Pharm 13:1069–1079

    CAS  Google Scholar 

  102. Lindberg N-O, Holmquist B (1987) Optimizing the friability of a tablet formulation. Drug Dev Ind Pharm 13:1063–1067

    CAS  Google Scholar 

  103. Lindberg N-O, Holmquist C, Jönsson B (1985) Optimization of disintegration time and crushing strength of a tablet formulation. Drug Dev Ind Pharm 11: 931–943

    CAS  Google Scholar 

  104. Lindberg N-O, Jönsson C (1983) Granulation of lactose in a recording high-speed mixer diosna P25. Drug Dev Ind Pharm 9: 959–970

    CAS  Google Scholar 

  105. List PH, Muazzam UA (1981) Quellung-die treibende Kraft beim Tablettenzerfall. 4. Mitteilung. Pharm Ind 43: 480–484

    Google Scholar 

  106. Lordi N, Shiromani P (1985) Compressibility of salts. Drug Dev Ind Pharm 11:13–30

    CAS  Google Scholar 

  107. Lowenthal W (1973) Mechanism of action of tablet disintegrants. Pharm Acta Helv 48: 589–609

    PubMed  CAS  Google Scholar 

  108. Malamataris S, Goidas P, Dimitriou A (1991) Moisture sorption and tensile strength of some tableted direct compression excipients. Int J Pharm 68: 51–60

    CAS  Google Scholar 

  109. Miseta M, Pintye-Hódi K, Szabó-Révész P, Szalay L, Sághi P (1993) Investigation of new commercial sodium starch glycolate products. Pharm Ind 55: 515–518

    CAS  Google Scholar 

  110. Mitrevej A, Augsburger L (1980) Adhesion of tablets in a rotary tablet press instrumentation and preliminary study of variables affecting adhesion. Drug Dev Ind Pharm 6: 331–377

    Google Scholar 

  111. Mitrevej KT, Augsburger LL (1982) Adhesion of tablets in a rotary tablet press iieffects of blending time running time and lubrication concentration. Drug Dev Ind Pharm 8: 237–282

    CAS  Google Scholar 

  112. Mollan MJ Jr, Celik M (1996) The effects of lubrication on the compaction and postcompaction properties of directly compressible maltodextrins. International Journal of Pharmaceutics 144: 1–9

    CAS  Google Scholar 

  113. Mufrod Parrot EL (1990) Effect of pressure on disintegration of tablets and dissolution of ephedrine sulfate. Drug Dev Ind Pharm 16: 1081–1090

    CAS  Google Scholar 

  114. Munos-Ruiz A, Villar TP, Munoz NM, Perales MCM, Jimenez-Castellanos MR (1994) Analysis of the physical characterization and the tabletability of calcium phosphate-based materials. Int J Pharm 110: 37–45

    Google Scholar 

  115. Munoz-Ruiz A, Antequera MV, del Perales MCM Ballesteros MRJ-C (1994) Tabletting Properties of New Granular Microcristalline Celluloses. Eur J Pharm Biopharm 40: 36–40

    CAS  Google Scholar 

  116. Muñoz-Ruiz A, Perales MCM, Antequera MW, Villar TP, Munoz-Munoz N, Jiménez-Castellanos MR (1993) Rheology and compression characteristics of lactose based direct compression excipients. Int J Pharm 95: 201–207

    Google Scholar 

  117. Nadkarni PD, Kildsig DO, Kramer P, Banker GS (1975) Effect of surface roughness and coating solvent on film adhesion to tablets. J Pharm Sci 64:1554–1557

    PubMed  CAS  Google Scholar 

  118. Newton JM, Alderborn G, Nyström C, Stanley P (1993) The compressive to tensile strength ratio of pharmceutical compacts. Int J Pharm 93:249–251

    CAS  Google Scholar 

  119. Newton JM, Bader F (1981) The prediction of the bulk densities of powder mixtures and its relationsship to the filling of hard gelatine capsules. J Pharm Pharmacol 33: 621–626

    PubMed  CAS  Google Scholar 

  120. Newton JM, Cook DT, Hollebon CE (1977) The strength of tablets of mixed components. J Pharm Pharmacol 29: 247–249

    PubMed  CAS  Google Scholar 

  121. Nokhodchi A, Rubinstein MH, Larhrib H, Guyot JC (1995) The effect of moisture content on the energies involved in the compaction of ibuprofen. Int J Pharm 120: 13–20

    CAS  Google Scholar 

  122. Nürnberg E, Hopp A (1981) Flüssigkristalle und berührungslose Temperaturmessung — ihre Anwendung in der Tablettierung. Deutsche Apotheker Zeitung 121:1133–1142

    Google Scholar 

  123. Nyström C, Mazur J, Sjögren J (1982) Studies on direct compression of tablets. II. The influence of the particle size of a dry binder on the mechanical strength of tablets. Int J Pharm 10: 209–218

    Google Scholar 

  124. Otsuka M, Gao J, Matsuda Y (1993) Effects of mixer and mixing time on the pharmaceutical properties of theophylline tablets containing various kinds of lactose as diluents. Drug Dev Ind Pharm 19: 333–348

    CAS  Google Scholar 

  125. Paronen P (1986) Heckel plot as indicators of elastic properties of pharmaceuticals. Drug Dev Ind Pharm 12:1903–1912

    CAS  Google Scholar 

  126. Paronen P, Juslin M (1983) Compressional characteristics of four starches. J Pharm Pharmacol 35: 627–635

    PubMed  CAS  Google Scholar 

  127. Patel NK, Patel IJ, Cutie AJ, Wadke DA, Monkhouse DC, Reier GE (1988) The effect of selected direct compression excipients on the stability of aspirin as a model hydrolyzable drug. Drug Dev Ind Pharm 14: 77–98

    CAS  Google Scholar 

  128. Patel NK, Patel IJ, Cutie AJ, Wadke DA, Monkhouse DC, Reier GE (1988) The effect of selected direct compression excipients on the stability of aspirin as a model hydrolyzable drug.Drug Dev Ind Pharm 14: 77–98

    CAS  Google Scholar 

  129. Patel NK, Upadhyay AH, Bergum JS, Reier GE (1994) An evaluation of microcristalline cellulose and lactose excipients using an instrumented single station tablet press. Int J Pharm: 203–210

    Google Scholar 

  130. Perales MCM, Munoz-Ruiz A, Antequera MW, Munoz NM, Jiminez-Castellanos MR (1994) Analysis comparative of methods to evaluate consolidation mechanisms in plastic and viscoelastic materials used as direct compression excipients. Drug Dev Ind Pharm 20: 327–342

    Google Scholar 

  131. Perales MCM, Munoz-Ruiz A, Antequera MW, Ballesteros MRJ-C (1994) Study of the compaction mechanisms of lactose-based direct compression excipients using indentation hardness and Heckel plots. J Pharm Pharmacol 46:177–181

    Google Scholar 

  132. Pesonen T, Paronen P (1990) The effect of particle and powder properties on the mechanical properties of directly compressed cellulose tablets. Drug Dev Ind Pharm 16: 31–54

    CAS  Google Scholar 

  133. Pesonen T, Paronen P, Ketolainen J (1989) Disintegrant properties of agglomerated cellulose powder. Int J Pharm 57:139–147

    CAS  Google Scholar 

  134. Pintye-Hódi K, Gyurkó E, Szabó-Révész P, Miseta M (1991) Gemeinsamer Einfluss von Hilfsstoffen und Presskraft auf die Parameter von Tabletten mit gut verpressbaren Wirkstoffen. Pharm Ind 53: 591–594

    Google Scholar 

  135. Podczeck F, Miah Y (1996) The influence of particle size and shape on the angle of internal friction and the flow factor of unlubricated and lubricated powders. International Journal of Pharmaceutics 144:187–194

    CAS  Google Scholar 

  136. Podczeck F, Wenzel U (1989) Untersuchungen zur Direkttablettierung von Arzneistoffen. Pharm Ind 51: 524–527

    CAS  Google Scholar 

  137. Ponchel G, Duchene D (1990) Evaluation of Formalin-Casein as a Tablet Disintegrant. Drug Dev Ind Pharm 16: 613–628

    CAS  Google Scholar 

  138. Proost JH, Bolhuis GK, Lerk CF (1983) The effect of the swelling capacity of disintegrants on the in-vitro and in-vivo availability of diazepam tablets containing magnesium stearate as a lubricant. Int J Pharm 13: 287–296

    CAS  Google Scholar 

  139. Rees JE, Rue PJ (1978) Time-dependent deformation of some direct compression excipients. J Pharm Pharmac 30: 601–607

    CAS  Google Scholar 

  140. Reisen P (1987) Untersuchungen zur Wirkung von Schmiermitteln bei der Tablettierung auf Exzenter-und Rundläufertablettenpressen am Beispiel verschiedener Magnesiumstearate. Pharmazeutisches Institut der Christian-Albrechts-Universität

    Google Scholar 

  141. Riepma KA, Lerk CF, de Boer AH, Bolhuis GK, Kussendrager KD (1990) Consolidation and compaction of powder mixtures i binary mixtures of same particle size fractions of different types of crystalline lactose. Int J Pharm 66: 47–52

    CAS  Google Scholar 

  142. Riepma KA, Veenstra J, de Boer AH, Bolhuis GK, Zuurman K, Lerk CF, Vromans H (1991) Consolidation and compaction of powder mixtures: II. Binary mixtures of different particle size fractions of a-lactose monohydrate. Int J Pharm 76: 9–15

    CAS  Google Scholar 

  143. Riepma KA, Vromans H, Lerk CFA (1993) Coherent matrix model for the consolidation and compaction of an excipient with magnesium stearate. Int J Pharm 97: 195–203

    CAS  Google Scholar 

  144. Riepma KA, Zuurman K, Bolhuis GK, de Boer AH, Lerk CF (1992) Consolidation and compaction of powder mixtures: III. Binary mixtures of different particle size fractions of different types of crystalline lactose. Int J Pharm 85:121–128

    CAS  Google Scholar 

  145. Ringard J (1988) Calculation of Disintegrant Critical Concentration in Order to Optimize Tablets Disintegration. Drug Dev Ind Pharm 14: 2321–2339

    CAS  Google Scholar 

  146. Ritter M, Dürrenberger Sucker H (1978) Messmethode zur Quantifizierung des Klebens von Tabletten. Pharm Ind 40:1181–1183

    CAS  Google Scholar 

  147. Roberts RJ, Rowe RC (1999) Relationships between the modulus of elasticity and tensile strength for pharmaceutical drugs and excipients. J Pharm Pharmacol 51: 975–977

    PubMed  CAS  Google Scholar 

  148. Roberts RJ, Rowe RC (1985) The effect of punch velocity on the compaction of a variety of materials. J Pharm Pharmacol 37: 377–384

    PubMed  CAS  Google Scholar 

  149. Roberts RJ, Rowe RC (1986) The effect of the relationship between punch velocity and particle size on the compaction behaviour of materials with varying deformation mechanisms. J Pharm Pharmacol 38: 567–571

    PubMed  CAS  Google Scholar 

  150. Roberts RJ, Rowe RC (1987) The Young’s modulus of pharmaceutical materials. Int J Pharm 37: 15–18

    CAS  Google Scholar 

  151. Rowe RC (1978) The measurement of the adhesion of film coatings to tablet surfaces: the effect of tablet porosity surface roughness and film thickness. J Pharm Pharmac 30: 343–346

    CAS  Google Scholar 

  152. Rubensdörfer C (1993) Einsatz und Charakterisierung von Ludipress als Direkttablettierhilfsmittel. Dissertation Fakultät für Chemie und Pharmazie der Eberhard-Karls-Universität Tübingen

    Google Scholar 

  153. Rue PJ, Rees JE (1978) Limitations of the Heckel relation for predicting powder compaction mechanisms. J Pharm Pharmac 30: 642

    CAS  Google Scholar 

  154. Sakr AM, Kassem AA, Farrag NA (1975) Carboxy Methyl-Starch: A New Tablet Disintegrant. Pharm Ind 37: 283–287

    CAS  Google Scholar 

  155. Sangekar SA, Sarli M, Sheth PR (1972) Effect of Moisture on Physical Characteristics of Tablets Prepared from Direct Compression Excipients. J Pharm Sci 61: 939–944

    PubMed  CAS  Google Scholar 

  156. Schmidt PC, Ebel S, Koch H, Profitlich T, Tenter U (1988) Presskraft-und Weg-Zeit-Charakteristik von Rundlauftablettenpressen. 4. Mitteilung: Quantitative Auswertung von Presskraft-Zeit-Kurven. Pharm Ind 50: 1409–1412

    CAS  Google Scholar 

  157. Schmidt PC, Steffens K-J, Knebel G (1983) Vereinfachung der Registrierung physikalischer Parameter bei der Tablettierung. 3. Mitteilung: Quantitative Erfassung des „Klebens“ von Pressmassen. Pharm Ind 45: 800–805

    Google Scholar 

  158. Schmidt PC, Tenter U (1988) Presskraft-und Weg-Zeit-Charakteristik von Rundlauftablettenpressen. 3. Mitteilung: Vergleich verschiedener Pressmaterialien. Pharm Ind 50:376–381

    CAS  Google Scholar 

  159. Schmidt PC, Leitritz M (1997) Compression force/time-profiles of microcrystalline cellulose dicalcium phosphate dihydrate and their binary mixtures-a critical consideration of experimental parameters. European Journal of Pharmaceutics and Biopharmaceutics 44: 303–313

    CAS  Google Scholar 

  160. Schlack H (2001) Vergleich der Kompressionseigenschaften an Rundläufer-und Exzenterpressen, Dissertation Universität Freiburg

    Google Scholar 

  161. Schwabe L, Schuppan D, Rietbrock N, Frömming K-H (1981) Einfluss von Tabletten-Füllstoffen auf die In-vitro-Freisetzung und die relative Bioverfügbarkeit von Nitrofurantoin. Pharm Ind 43:1134–1138

    CAS  Google Scholar 

  162. Schwartz JB, Martin ET, Dehner EJ (1975) Intragranular starch: comparison of starch usp and modified cornstarch. J Pharm Sci 64: 328–332

    PubMed  CAS  Google Scholar 

  163. Sheik-Salem M, Alkaysi H, Fell JT (1988) The tensile strength of tablets of binary mixtures lubricated with magnesium stearate. Drug Dev Ind Pharm 14: 895–903

    Google Scholar 

  164. Stamm A, Mathis C (1976) Verpressbarkeit von festen Hilfsstoffen für Direkttablettierung. Acta Pharm Technol Suppl. 1: 7–16

    CAS  Google Scholar 

  165. Staniforth JN (1993) The Design and use of Tableting Excipients. Drug Dev Ind Pharm 19: 2273–2308

    CAS  Google Scholar 

  166. Stanley P (2001) Mechanical strength testing of compacted powders. International Journal of Pharmaceutics 227: 27–38

    PubMed  CAS  Google Scholar 

  167. Steffens K-J, Müller BW, List PH (1982) Tribologische Gesetzmäßigkeiten und Erkenntnisse in der Tablettentechnologie. 7. Mitteilung. Pharm Ind 44: 826–830

    CAS  Google Scholar 

  168. Sucker H, Fuchs P, Speiser P (1991) Pharmazeutische Technologie. Thieme, Stuttgart New York

    Google Scholar 

  169. Szabo-Révész P, Petö K, Pintye-Hódi K (1986) Untersuchung der Verwendbarkeit von mikrokristallinen Cellulosen bei der Herstellung von Phenobarbital-Tabletten. 2. Mitteilung: Einfluss von Avicel PH 101 sowie von Avicel PH 101 und Maisstärke auf die Parameter von Tabletten. Pharm Ind 48: 289–291

    Google Scholar 

  170. Thwaites PM (1992) The effect of mixing time and mixing intensity on the compression properties of tablettose. Drug Dev Ind Pharm 18: 2001–2010

    CAS  Google Scholar 

  171. Thwaites PM, Mashadi AB, Moore WD (1991) An investigation of the effect of high speed mixing on the mechanical and physical properties of direct compression lactose. Drug Dev Ind Pharm 17: 503–517

    CAS  Google Scholar 

  172. Udeala OK, Aly SAS (1989) Linear relationship between tablet properties in systems compressed under fixed compression force. Drug Dev Ind Pharm 15:133–145

    CAS  Google Scholar 

  173. Van der Voort Maarschalk K, Bolhuis GK (1999) Improving Properties of Materials for Direct Compaction. Pharmaceutical Technology (5): 34

    Google Scholar 

  174. van der Watt JG, de Villiers MM (1997) The effect of V-mixer scale-up on the mixing of magnesium stearate with direct compression microcrystalline cellulose. European Journal of Pharmaceutics and Biopharmaceutics 43: 91–94

    Google Scholar 

  175. van Kamp HV, Bolhuis GK, de Boer AH, Lerk CF, Lie-A-Huen L (1986) The role of water uptake on tablet disintegration. Pharm Acta Helv 61: 22–29

    PubMed  Google Scholar 

  176. Van Veen B, van der Voort Maarschalk K, Bolhuis GK (2000) Tensile strength of tablets containing two materials with a different compaction behaviour. International Journal of Pharmaceutics 203: 71–79

    PubMed  Google Scholar 

  177. Varthalis S, Pilpel N (1977) The action of colloidal silicon dioxide as a glidant for lactose paracetamol Oxytetracycline and their mixtures. J Pharm Pharmacol 29: 37–40

    PubMed  CAS  Google Scholar 

  178. Velasco M.V, Munoz-Ruiz A, Monedero MC, Jimenez-Castellanos MR (1995) Study of flowability of powders effect of the addition of lubricants. Drug Dev Ind Pharm 21: 2385–2391

    CAS  Google Scholar 

  179. Vezin WR, Pang HM, Khan KA, Malkowska S (1983) The effect of precompression in a rotary machine on tablet strength. Drug Dev Ind Pharm 9:1465–1474

    CAS  Google Scholar 

  180. Vromans H, de Boer AH, Bolhuis GK, Lerk CF, Kussendrager KD (1986) Studies on tableting properties of lactose: The effect of initial particle size on binding properties and dehydration characteristics of α-lactose monohydrate. Drug Dev Ind Pharm 12:1715–1730

    CAS  Google Scholar 

  181. Wade A, Weller PJ (1994) Handbook of Pharmaceutical Excipients. The Pharmaceutical Press, London

    Google Scholar 

  182. Walz M (1988) Haftung und Kleben von Tablettenmassen an Presswerkzeugen, Dissertation, Institut für Pharmazeutische Technologie und Biopharmazie der Ruprecht-Karls-Universität Heidelberg

    Google Scholar 

  183. Wan LS, Heng PWS (1986) Action of Surfactant on Disintegration and Dissolution of Tablets containing Microcrystalline cellulose. Pharm Acta Helv 61:157–163

    PubMed  CAS  Google Scholar 

  184. Wang L-H, Chowhan ZT (1990) Drug-excipient interaction resulting from powder mixing v role of sodium lauryl sulfate. Int J Pharm 60: 61–78

    CAS  Google Scholar 

  185. Warring MJ, Sen H, Forrester JW, Salmon JR (1986) Instrumented and computer interfaced single punch tablet press for the rapid evaluation of compression and lubrication behavior. Drug Dev Ind Pharm 12:1847–1868

    Google Scholar 

  186. Weinekötter R (1995) Mischzeiten in Feststoffmischern-Gestaltung von Chargenmischprozessen. Schüttgut 1:125–128

    Google Scholar 

  187. Wells JI 1988 Pharmaceutical preformulation-the physicochemical properties of drug substances. Ellis Horwood, Chichester

    Google Scholar 

  188. Westerberg M, Nyström C (1991) Physicochemical aspects of drug release. XII. The effect of some carrier particle properties and lubricant admixture on drug dissolution from tableted ordered mixtures. Int J Pharm 69: 129–141

    CAS  Google Scholar 

  189. Whiteman M, Yarwood RJ (1990) Variations in lactose NF from different sources and their influence on tablet properties. Drug Dev Ind Pharm 16:1815–1827 5-190. Williams RO, McGinity JW (1988) The use of tableting properties to study the compaction properties of powders. Drug Dev Ind Pharm 14: 1823–1844

    CAS  Google Scholar 

  190. Zhang Y, Johnson KC (1997) Effect of drug particle size on content uniformity of lowdose solid dosage forms. International Journal of Pharmaceutics 154: 179–183

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sticker, H. (2003). Entwicklung von Tabletten (Direktverpressung). In: Arzneiformen-Entwicklung. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18982-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18982-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62393-6

  • Online ISBN: 978-3-642-18982-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics