Skip to main content

Entwicklung von Extrusionspellets

  • Chapter
Arzneiformen-Entwicklung

Part of the book series: Springer-Lehrbuch ((SLB))

  • 214 Accesses

Zusammenfassung

Im Arzneibuch werden kugelförmige Aggregate aus festen Einzelteilchen — u. a. Arzneistoffen — Pellets genannt und der Monographie „Granulate“ zugeordnet. Von den üblichen Granulaten unterscheiden sich Pellets — außer in der Form — in der scheinbaren Dichte, d. h. Pellets sind etwas dichter als Granulate. Sie sind meist Zwischenprodukte, da sie überwiegend mit Polymerhüllen versehen werden. Die geringe Größe der Pellets gewährleistet eine rasche Magenpassage sowie eine breite Verteilung im Darmtrakt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Gröbel C (2001 ) Wissensbasierte Entwicklung von Extrusionspellets. Geplante Dissertation, Universität Heidelberg

    Google Scholar 

  2. Baert L, Fanara D, de Baets P, Remon JP (1991) Instrumentation of a gravity feed extruder and the influence of the composition of binary and ternary mixtures on the extrusion forces. J Pharm Pharmacol 43: 745–749

    PubMed  CAS  Google Scholar 

  3. Bug J (1994) Prozesssteuerung bei Pelletherstellung und Coating. APV-Kurs 109

    Google Scholar 

  4. Baert L, Fanara D, Remon JP, Massart DL (1992) Correlation of extrusion forces, raw materials and sphere characteristics. J Pharm Pharmacol 44: 676–678

    PubMed  CAS  Google Scholar 

  5. Baert L, Remon JP (1993) Influence of amount of granulation liquid on the drug release rate from pellets made by extrusion/ spheronisation. Int J Pharm 95:135–141

    CAS  Google Scholar 

  6. Baert L, Remon JP, Elbers JAC, Van Bommel EMG (1993) Comparison between a gravity feed extruder an a twin screw extruder. Int J Pharm 99: 7–12

    CAS  Google Scholar 

  7. Baert L, Remon JP, Knight P, Newton JM (1992) A comparison betweeen the Extrusion forces and sphere quality of a gravity feed extruder and a ram extruder. Int J Pharm 86: 187–192

    CAS  Google Scholar 

  8. Baert L, Vermeersch H, Remon JP, Smeyers-Verbeke J, Massart DL (1993) Study of parameters important in the spheronisation process. Int J Pharm 96: 225–229

    CAS  Google Scholar 

  9. Balszuweit F, Wagner T, Kleinebudde P (2000) Eine neue Methode zur Charakterisierung der spezifischen Oberfläche von Pellets mittels Flachbettscanner und Bildanalyse. Pharm Ind 62: 985

    Google Scholar 

  10. Barrau JP, Bataille B, Jacob M (1993) The influence of spheronizer load in extrusion/ spheronisation. Pharm Techn Intern 9:66–70

    Google Scholar 

  11. Berg von I, Aderborn G (2001 ) Effect of drying rate on porosity an tabletting behaviour of cellulose pellets. Int J Pharm 227: 81–86

    Google Scholar 

  12. Bianchini R, Bruni G, Gazzangia A, Vecchio C (1992) Influence of extrusion-spheronisation processing on the physical properties of d-Indobufen pellets containing pH-adjusters. Drug Dev Ind Pharm 18:1485–1503

    CAS  Google Scholar 

  13. Blanque D, Sternagel H, Podczeck F, Newton JM (1995) Some factors influencing the formation and in vitro drug release from matrix pellets prepared by extruion/spheronisation. Int J Pharm 119: 203–211

    CAS  Google Scholar 

  14. Bothmann V, Schmidt W, Mehnert W, Frömming KH (1994) Herstellung von Pellets in einem Labor-Rotorgranulator. Pharm Ind 56: 570–573

    CAS  Google Scholar 

  15. Chatlapalli R, Rohera BD (1995) Extrusion and spheronisation I: Evaluation of some hydrophilic polymers as extrusion and spheronisation aids for controled release applications. Pharm Res 12: 156

    Google Scholar 

  16. Chohan RK, Newton JM (1996) Analysis of extrusion of some wet powder masses used in extrusion/spheronisation. Int J Pharm 131:201–207

    CAS  Google Scholar 

  17. Dietrich R, Brausse R (1988) Erste Erfahrungen und Validierungsversuche an einem neu entwickelten GMP-gerechten und instrumentierten Pharma-Extruder. Pharm Ind 50:1179–1186

    CAS  Google Scholar 

  18. Dyer AM, Khan KA, Aulton ME (1994) Effect of the drying method on the mechanical and drug release properties of pellets prepared by extrusion-spheronisation. Drug Dev Ind Pharm 20: 3045–3068

    CAS  Google Scholar 

  19. Eerikäinen S ( 1991 ) Effects of spheronization on some properties of uncoated and coated granules containing different kinds of fillers. IntJ Pharm 77: 89–106

    Google Scholar 

  20. Eerikäinen S, Lindqvist AS ( 1991 ) The behaviour of various fillers in spheronized uncoated and film-coated granules containing slightliy water-soluble indomethacin. Int J Pharm 75:181–192

    Google Scholar 

  21. Elbers JAC, Bakkenes HW, Fokkens JG (1992) Effect of amount and composition of granulation liquid on mixing, extrusion and spheronisation. Drug Dev Ind Pharm 18: 501–517

    CAS  Google Scholar 

  22. Fekete R, Zelkó R, Marton S, Rácz I (1998) Effect of the formulation parameters on the characteristics of pellets. Drug Dev Ind Pharm 24:1073–1076

    PubMed  CAS  Google Scholar 

  23. Fielden KE, Newton JM, Rowe RC (1992) A comparison of the extrusion and spheronisation behaviour of wet powder masses processed by a ram extruder and a cylinder extruder. Int J Pharm 81: 225–233

    CAS  Google Scholar 

  24. Fielden KE, Newton JM, Rowe RC (1989) The effect of lactose particle size on the extrusion properties of microcrystalline cellulose-lactose mixtures. J Pharm Pharmacol 41:217–221

    PubMed  CAS  Google Scholar 

  25. Fielden KE, Newton JM, Rowe RC (1992) The influence of lactose particle size on spheronization of extrudate processed by a ram extruder. Int J Pharm 81: 205–224

    CAS  Google Scholar 

  26. Fielden KE, Newton JM, Rowe RC (1993) The influence of moisture content on spheronization of extrudates processed by a ram extruder. Int J Pharm 97: 79–92

    CAS  Google Scholar 

  27. Funck JAB, Schwartz JB, Reilly WJ, Ghali ES (1991) Binder effectiveness for beads with high drug levels. Drug Dev Ind Pharm 17:1143–1156

    CAS  Google Scholar 

  28. Gamlen MJ, Eardley C (1986) Continuous extrusion using a Baker Perkins MP 50 (Multipurpose) extruder. Drug Dev Ind Pharm 12: 1701–1713

    CAS  Google Scholar 

  29. Ghali ES, Klinger GH, Schwartz JB (1989) Modified drug release from beads prepared with combinations of two grades of microcrystalline cellulose. Drug Dev Ind Pharm 15:1455–1473

    CAS  Google Scholar 

  30. Ghebre-Sellassie I (1989) Pharmaceutical pelletisation technology, 1. edn. Marcel Dekker, New York

    Google Scholar 

  31. Ghebre-Sellassie I, Gordon RH, Fawzi MB, Nesbitt RU (1985) Evaluation of a high-speed pelletization process and equipment. Drug Dev Ind Pharm 11: 1523–1541

    Google Scholar 

  32. Goskonda SR, Hileman GA, Upadrashta SM (1994) Controlled release pellets by extrusion-spheronisation. Int J Pharm 111: 89–97

    CAS  Google Scholar 

  33. Gouldson MP, Deasy PB (1997) Use of cellulose ether containing excipients with microcrystalline cellulose for the production of pellets containing metformin hydrochloride by the process of extrusion-spheronization. J Microencapsulation 14:137–153

    PubMed  CAS  Google Scholar 

  34. Harrison PJ, Newton JM, Rowe RC (1984) Convergent flow analysis in the extrusion of wet powder masses. J Pharm Pharmacol 36: 796–798

    PubMed  CAS  Google Scholar 

  35. Harrison PJ, Newton JM, Rowe RC (1985) The characterisation of wet powder masses suitable for extrusion/spheronisation. J Pharm Pharmacol 37: 686–691

    PubMed  CAS  Google Scholar 

  36. Hellén L, Bohm K, Merkku P, Yliruusi J (1995) Pelletisation of waer insoluble ibuprofen: effect of particle size of ibuprofen and amount of granulation liquid on the properties of pellets. PTC Barcelona: 604–608

    Google Scholar 

  37. Hellén L, Yliruusi J (1993) Process variables of instant granulator and spheroniser-III) Shape and shape distribution of pellets. Int J Pharm 96: 217–223

    Google Scholar 

  38. Hellén L, Yliruusi J, Kristofferson E (1993) Process variables of instant granulator and spheroniser:-II) Size and size distribution of pellets. Int J Pharm 96: 205–216

    Google Scholar 

  39. Hellén L, Yliruusi J, Mannermaa JP, Merkku P (1995) Effect of the amount of granulation liquid and particle size on the properties of ibuprofen pellets made in a Nica Pelletizer. Pharm Res 12: 189

    Google Scholar 

  40. Hellén L, Yliruusi J, Merkku P, Kristofferson E (1993) Process variables of instant granulator and spheroniser:-I) Physical properties of granules, extrudates and pellets. Int J Pharm 96:197–204

    Google Scholar 

  41. Heng PWS, Koo OMY (2001) A study of the effects of the physical characteristics of microcrystalline cellulose on performance in extrusion spheronization. Pharm Res 18: 480

    PubMed  CAS  Google Scholar 

  42. Heng PWS, Staniforth JN (1988) The effect of moisture on the cohesive properties of microcrystalline cellulose. J Pharm Pharmacol 40: 360–362

    PubMed  CAS  Google Scholar 

  43. Heng PWS, Wan LSC, Ling BL (1995) Assessment of powder cohesiveness in spheronisation studies. Int J Pharm 116:119–123

    CAS  Google Scholar 

  44. Herman J, Remon JP, Visavarungroj N, Schwartz JB, Klinger GH (1988) Formation of theophylline monohydrate during the pelletisation of microcrystalline cellulose-anhydrous theophylline blends. Int J Pharm 42: 15–18

    CAS  Google Scholar 

  45. Herman J, Remon JP, Lefebvre R, Bogaert M, Klinger HG, Schwartz JB (1988) The dissolution rate and bioavailability of hydrochlorothiazide in pellet formulations. J Pharm Pharmacol 40:157–160

    PubMed  CAS  Google Scholar 

  46. Hileman GA, Goskonda SR, Spalitto AJ, Upadrashta SM (1993) Response surface optimization of high dose pellets by extrusion and speronisation. Int J Pharm 100: 71–79

    CAS  Google Scholar 

  47. Holm P, Bonde M, Wigmore T (1996) Pelletization by granulation in a Roto-Processor RP2. part I: effects of process and product variables on granule growth. Pharm Tech Eur 8:21

    Google Scholar 

  48. Holm P (1996) Pelletization by granulation in a Roto-Processor RP-2. Part II: Effects of process and product variables on agglomerates’ shape and porosity. Pharm Tech Eur 8: 38

    Google Scholar 

  49. Holm P (1996) Pelletization by granulation in a Roto-Processor RP-2. Part III: Methods of process control and the effect of microcrystalline cellulose on wet granulation. Pharm Tech Eur 8: 46

    Google Scholar 

  50. Jones DM (1985) Factors to consider in fluidbed processing. Pharm Tech 4:12

    Google Scholar 

  51. Jover I, Podczeck F, Newton M ( 1996) Evaluation, by a statistically disigned experiment, of an experimental grade of microcrystalline cellulose, Avicel 955, as a technology to aid the production of pellets with high drug loading. J Pharm Sci 85: 700

    PubMed  CAS  Google Scholar 

  52. Kim C-K, Yoon Y-S (1991) The preparation of ascorbic acid pellets using the wet pelletization process in liquid media. Drug Dev Ind Pharm 17: 581–591

    CAS  Google Scholar 

  53. Kleinebudde P (1993) Application of low substituted hydroxypropylcellulose (L-HPC) in the production of pellets using extrusion/spheronisation. Int J Pharm 96:119–128

    CAS  Google Scholar 

  54. Kleinebudde P (1994) Shrinking and swelling properties of pellets containing microcrystalline cellulose and low substituted hydoxypropylcellulose: I) Shrinking properties. Int J Pharm 109: 209–219

    CAS  Google Scholar 

  55. Kleinebudde P (1994) Shrinking and swelling properties of pellets containing microcrystalline cellulose and low substituted hydoxypropylcellulose: II) Swelling properties. Int J Pharm 109: 221–227

    CAS  Google Scholar 

  56. Kleinebudde P (1995) Use of a power-consumption-controlled extruder in the development of pellet formulations. J Pharm Sci 84: 1259–1266

    PubMed  CAS  Google Scholar 

  57. Kleinebudde P (1997) Pharmazeutische Pellets durch Extrudieren/Sphäronisieren. Herstellung, Eigenschaften, Modifizierung. Habilitationsschrift, Universität Kiel

    Google Scholar 

  58. Kleinebudde P, Lindner H (1993) Experiments with an instrumented twin-screw extruder using a single step granulation/extrusion process. Int J Pharm 94:49–58

    CAS  Google Scholar 

  59. Kleinebudde P, Nymo L (1995) Homogeneous pellets of binary mixtures, comparison between extruder/spheronizer and high-shear mixer. Proc 1. World Meeting APGI/APV Budapest: 343–344

    Google Scholar 

  60. Kleinebudde P, Solvberg AJ, Lindner H (1994) The power-consumption-controlled extruder: A tool for pellet production. J Pharm Pharmacol 46: 542–546

    PubMed  CAS  Google Scholar 

  61. Knop K, Lippold BC ( 1989) Die Wirbelschichtgranulation als Herstellungsmethode für Pellets. Pharm Ind 51: 302–309

    CAS  Google Scholar 

  62. Knop K, Lippold BC ( 1991 ) Pelletherstellung in der Wirbelschicht am Beispiel der gut löslichen Arzneistoffe Ascorbinsäure und Etofyllin. Pharm Ind 53: 1065

    CAS  Google Scholar 

  63. Körber U, Moest T (1990) Gerät zur Bestimmung des Abriebs von festen Arzneiformen, insbesondere von Pellets. Acta Pharm Technol 36: 33–35

    Google Scholar 

  64. Ku CC, Joshi YM, Bergum JS, Jain NB (1993) Bead manufacture by Extrusion/spheronisation-a statistical design for process optimation. Drug Dev Ind Pharm 19:1505–1519

    CAS  Google Scholar 

  65. Law MFL, Deasy PB (1998) Use of hydrophilic polymers with microcrystalline cellulose to improve extrusion-spheronization. Eur J Pharm Biopharm 45: 57–65

    PubMed  CAS  Google Scholar 

  66. Law MFL, Deasy PB, McLaughlin JP, Gabriel S (1997) Comparison of two commercial brands of microcrystalline cellulose for extrusion-spheronization. J Microencapsulation 14: 713–723

    PubMed  CAS  Google Scholar 

  67. Lindner H (1993) Entwicklung eines leistungsgeregelten Zweischneckenextruders zur Herstellung pharmazeutischer Pellets. Dissertation Universität Kiel

    Google Scholar 

  68. Lindner H, Kleinebudde P ( 1993) Anwendung der automatischen Bildanalyse zur Charakterisierung von Pellets. Pharm Ind 55: 694–701

    Google Scholar 

  69. Lindner H, Kleinebudde P (1994) Use of powdered cellulose for the production of pellets by extrusion/spheronisation. J Pharm Pharmacol 46: 2–7

    PubMed  CAS  Google Scholar 

  70. Lövgren K, Lundberg PJ (1989) Determination of sphericity of pellets prepared by extrusion /spheronisation and the impact of some process parameters. Drug Dev Ind Pharm 15: 2375–2392

    Google Scholar 

  71. Lustig-Gustafsson C, Kaur Johal H, Podczeck F, Newton JM (1999) The influence of water content and drug solubility on the formulation of pellets by extrusion and spheronisation. Eur J Pharm Sci 8:147–152

    PubMed  CAS  Google Scholar 

  72. Maggi L, Bonfanti A, Santi P (1996) The suitability of a small scale high-shear mixer for powder pelletization. Pharm Tech Eur 8(9): 82–90

    Google Scholar 

  73. Mesiha MS, Vallés J (1993) A screening study of lubrificants in wet powder masses suitable for extrusion-spheronisation. Drug Dev Ind Pharm 19: 943–959

    CAS  Google Scholar 

  74. Millili GP, Schwartz JB (1990) The strength of microcrystalline cellulose pellets: the effect of granulating with water/ethanol mixtures. Drug Dev Ind Pharm 16:1411–1426

    CAS  Google Scholar 

  75. Neau SH, Chow MY, Durrani MJ (1996) Fabrication and characterization of extruded and spheronized beads containing Carbopol 974P, NF resin. Int J Pharm 131: 47–55

    CAS  Google Scholar 

  76. Neau SH, Chow MY, Hileman GA, Durrani MJ, Gheyas F, Evans BA (2000) Formulation and process considerations for beads containing Carbopol 974P, NF resin made by extrusionspheronization. Int J Pharm 199:129–140

    PubMed  CAS  Google Scholar 

  77. Newton JM, Chapman SR, Rowe RC (1995) The influence of process variables on the preparation and properties of spherical granules by the process of extrusion an spheronisation. Int J Pharm 120:101–109

    CAS  Google Scholar 

  78. Newton JM, Chow AK, Jeewa KB (1993) The effect of excipient source on spherical granules made by extrusion/spheronization. Pharm Tech 3: 166–174

    Google Scholar 

  79. Nürnberg E, Wunderlich J (1996) Vereinfachung der Rezepturoptimierung für Extrusionsprozesse bei der Pelletherstellung. Pharm Ind 58: 653–658

    Google Scholar 

  80. Nymo L, Schröder M, Schultz P, Müller BW, Waaler T, Kleinebudde P (1995) Properties of extruded pellets made from binary mixtures. Proc 1. World Meeting APGI/APV Budapest: 367–368

    Google Scholar 

  81. O’Connor RE, Schwartz JB (1993) Drug release mechanism from a microcrystalline cellulose pellet system. Pharm Res 10: 356–361

    PubMed  Google Scholar 

  82. O’Connor RE, Schwartz JB (1985) Spheronization II: Drug release from drug-diluent mixtures. Drug Dev Ind Pharm 11:1837–1857

    Google Scholar 

  83. Otsuka M, Gao J, Matsuda Y (1994) Effect of amount of added water during extrusionspheronization process on pharmaceutical properties of granules. Drug Dev Ind Pharm 20:2977–2992

    CAS  Google Scholar 

  84. Pinto JF, Buckton G, Newton JM (1992) The influence of four selected processing and formulation factors on the production of spheres by extrusion and spheronisation. Int J Pharm 83:187–196

    CAS  Google Scholar 

  85. Pinto JF, Buckton G, Newton JM (1995) A relationship between surface free energy and polarity data and some physical properties of spheroids. Int J Pharm 118: 95–101

    CAS  Google Scholar 

  86. Pišek R, Planinšek O, Tuš M (2000) Influence of rotational speed and surface of rotating disc on pellets produced by direct rotor pelletization. Pharm Ind 62: 312

    Google Scholar 

  87. Reher M (1996) Untersuchungen zur Steuerung der Pelletherstellung in Intensivmischern durch Bestimmung der elektrischen Leistungsaufnahme. Dissertation, Universität Marburg

    Google Scholar 

  88. Reilly WJ, Schwartz JB, Gahli ES (1994) Reprocessing of microcrystalline cellulose spheres with low drug concentrations. Drug Dev Ind Pharm 20:1511–1515

    CAS  Google Scholar 

  89. Robinson RL, Hollenbeck RG (1991) Manufacture of spherical acetaminophen pellets: Comparison of rotary processing with multiple-step extrusion and spheronization. Pharm Tech 5: 48–56

    Google Scholar 

  90. Sadeghi F, Ford JL, Rubinstein MH (2001) Study of Drug Release from Pellets Coated with Surelease Containing Hydroxypropylmethylcellulose. Drug Dev Ind Pharm 27: 419

    PubMed  CAS  Google Scholar 

  91. Schmidt C (1999) Herstellung pharmazeutischer Pellet-Strategien zur Einflussnahme in Granulation, Extrusion, Sphäronisation. Dissertation, Universität Kiel

    Google Scholar 

  92. Schmidt C, Kleinebudde P (1998) Comparison between a twin-screw extruder and a rotary ring die press. II. Influence of process variables. Eur J Pharm Biopharm 45:173–179

    PubMed  CAS  Google Scholar 

  93. Schmidt C, Lindner H, Kleinebudde P (1997) Comparison between a twin-screw extruder and a rotary ring die press. I. Influence of formulation variables. Eur J Pharm Biopharm 44:169–176

    CAS  Google Scholar 

  94. Schröder M (1996) Struktur und Eigenschaften schnellfreisetzender, extrudierter Pellets. Dissertation Universität Kiel

    Google Scholar 

  95. Schröder M, Kleinebudde P (1995) Influence of formulation parameters on dissolution of propyphenazone pellets. Eur J Pharm Biopharm 41: 382–387

    Google Scholar 

  96. Schröder M, Kleinebudde P (1995) Structure and pharmaceutical properties of pellets, effect of the granulation liquid. Proc 1. World Meeting APGI/APV Budapest: 341–342

    Google Scholar 

  97. Schultz P, Kleinebudde P (1995) Determination of pellet friability by use of an air stream apparatus. Pharm Ind 57: 323–328

    CAS  Google Scholar 

  98. Shah RD, Kabadi M, Pope DG, Augsburger LL (1994) Physico-mechanical characterisation of the extrusion-spheronisation process-1) Instrumentation of the extruder. Pharm Res 11:355–360

    PubMed  CAS  Google Scholar 

  99. Shah RD, Kabadi M, Pope DG, Augsburger LL (1995) Physico-mechanical characterisation of the extrusion-spheronisation process-2) rheological determinants for successful extrusion and spheronisation. Pharm Res 12: 496–507

    PubMed  CAS  Google Scholar 

  100. Sienkiewicz G, Pereira R, Rudnic EM (1997) Spheronization of theophylline-avicel combinations using a fluidized-bed rotogranulation technique. Drug Dev Ind Pharm 23: 173

    CAS  Google Scholar 

  101. Sirca J, Kerc J, Srcic S, Kofler B (1995) Preparation of neutral and ketoprofen pellets by extrusion/spheronisation technology. Proc 1. World Meeting APGI/APV Budapest: 369–370

    Google Scholar 

  102. Sonaglio D, Bataille B, Terol A, Jacob M, Pauvert B, Cassanas G (1995) Physical characterization of two types of microcrystalline cellulose and feasibility of microsheres by extrusion /spheronisation. Drug Dev Ind Pharm 21: 537–547

    CAS  Google Scholar 

  103. Sousa JJ, Sousa A, Podczeck F, Newton JM (1996) Influence of process conditions on drug release from pellets. Int J Pharm 144:159–169

    CAS  Google Scholar 

  104. Sousa JJ, Sousa A, Podczeck F, Newton JM (2002) Factors influencing the physical characteristics of pellets obtained by extrusionspheronization. Int J Pharm 232: 91–106

    PubMed  CAS  Google Scholar 

  105. Stamm A, Paris L (1985) Influence of technological factors on the optimal granulation liquid requirement measured by power consumption. Drug Dev Ind Pharm 11: 333–360

    Google Scholar 

  106. Thoma K, Ziegler I (1998) Investigations on the influence of the type of extruder for pelletization by extrusion-spheronization. I. Extrusion behaviour of formulations. Drug Dev Ind Pharm 24: 401–411

    PubMed  CAS  Google Scholar 

  107. Thoma K, Ziegler I (1998) Investigations on the influence of the type of extruder for pelletization by extrusion-spheronization. II. Sphere characteristics. Drug Dev Ind Pharm 24: 413–422

    PubMed  CAS  Google Scholar 

  108. Tomer G, Podczeck F, Newton IM (2002) The influence of model drugs on the preparation of pellets by extrusion/spheronization: II. Spheronization parameters. Int J Pharm 231:107–119

    PubMed  CAS  Google Scholar 

  109. Tuleu C, Chaumeil JC (1998) Small-scale characterization of wet powder masses suitable for extrusion-spheronization. Drug Dev Ind Pharm 24: 423–429

    PubMed  CAS  Google Scholar 

  110. Umprayn K, Chitropas P, Amarekajorn S (1999) Development of terbutaline sulfate sustained-release coated pellets. Drug Dev Ind Pharm 25: 477

    PubMed  CAS  Google Scholar 

  111. Umprayn K, Chitropas P, Amarekajorn S (1999) Influence of process variables on physical properties of the pellets using extruder and spheronizer. Drug Dev Ind Pharm 25: 45–61

    PubMed  CAS  Google Scholar 

  112. Vecchio C, Bruni G, Gazzangia A (1994) Preparation of Indobufen pellets by using centrifugal rotary fluidized bed equipment without starting seeds. Drug Dev Ind Pharm 20: 1943–1956

    CAS  Google Scholar 

  113. Vertommen J, Kinget R (1994) The influence of five selected processing and formulation variables on the production of pellets using a rotary processor. Proc. 40th. Annual Congress APV/Eur J Pharm Biopharm 40: 29S

    Google Scholar 

  114. Vertommen J, Kinget R (1997) The influence of five selected processing and formulation variables on the particle size, particle size distribution, and friability of pellets produced in a rotary processor. Drug Dev Ind Pharm 23: 39

    CAS  Google Scholar 

  115. Vertommen J, Rombaut P, Kinget R (1998) Internal and external structure of pellets made in a rotary processor. Int J Pharm 161: 225–236

    CAS  Google Scholar 

  116. Vertommen J, Rombaut P, Kinget R (1997) Shape and surface smoothness of pellets made in a rotary processor. Int J Pharm 146: 21–29

    CAS  Google Scholar 

  117. Vertommen J, Rombaut P, Kinget R (1997) Shape and surface smoothness of pellets made in a rotary processor. Int J Pharm 146: 21

    CAS  Google Scholar 

  118. Vervaet C, Baert L, Remon JP (1994) Enhancement of in vitro drug release by using polyethylene glycol 400 and PEG-40 hydrogenated castor oil in pellets made by extrusion/spheronisation. Int J Pharm 108: 207–212

    CAS  Google Scholar 

  119. Vervaet C, Baert L, Remon JP (1995) Extrusion-Spheronisation: A literature review. Int J Pharm 116:131–146

    CAS  Google Scholar 

  120. Vervaet C, Remon JP (1996) Influence of impeller design, method of screen perforation and perforation geometry on the quality of pellets made by extrusion-spheronisation. Int J Pharm 133: 29–37

    CAS  Google Scholar 

  121. Vojnovic D, Moneghini M, Masiello S (1995) Design and optimization of theophylline pellets obtained by wet spheronization in a highshear mixer. Drug Dev Ind Pharm 21:2129–2137

    CAS  Google Scholar 

  122. Vonk P, Guillaume CPF, Ramaker JS (1997) Growth mechanisms of high-shear pelletisation. Int J Pharm 157: 93

    CAS  Google Scholar 

  123. Wan LSC, Heng PWS, Liew CV (1993) Spheronisation conditions on spheroid shape and size. Int J Pharm 96: 59–65

    CAS  Google Scholar 

  124. Wan LSC, Heng PWS, Liew CV (1994) The role of moisture and gap air pressure in the formation of spherical granules by rotary processing. Drug Dev Ind Pharm 20: 2551–2561

    CAS  Google Scholar 

  125. Wan LSC, Jeyabalan T (1986) A simple apparatus fur measuring the crushing strength of pellets. Acta Pharm Technol 32:197–199

    Google Scholar 

  126. Werner D (1996) An evaluation of the sorption characteristics of pellets-a valuable instrument for stability considerations. Pharm Tech Eur 8(9): 30–37

    Google Scholar 

  127. Zacharias K (1987) Eignung von Polyvinylalkoholen zur Pelletherstellung. Dissertation, Universität Berlin

    Google Scholar 

  128. Zhang G, Schwartz JB, Schnaare RL (1990) Effects of spheronisation technique on drug release from uncoated beads. Drug Dev Ind Pharm 16:1171–1184

    CAS  Google Scholar 

  129. Zimmer T (1989) Grundprinzipien der Pelletherstellung in der pharm. Industrie Concept-Symposium Agglomerationstechnologie

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sticker, H. (2003). Entwicklung von Extrusionspellets. In: Arzneiformen-Entwicklung. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18982-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18982-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62393-6

  • Online ISBN: 978-3-642-18982-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics