Skip to main content

Machine Learning by Schedule Decomposition — Prospects for an Integration of AI and OR Techniques for Job Shop Scheduling

  • Chapter
  • 825 Accesses

Part of the book series: Natural Computing Series ((NCS))

Abstract

A survey of recent solution approaches as well as a class of approximation algorithms is provided for solving the minimum makespan problem of job shop scheduling. We briefly review most recent exact approaches as well as neighbourhood search methods and evolution based heuristics. Genetic algorithm-based meta-strategies serve to guide an optimal design of scheduling decision sequences. Simple sequences of dispatching rules for job assignment as well as learning of promising sequences of one machine and multiple job decompositions are considered. Finally, a number of ways for introducing problem-specific knowledge through constraint consistency tests for propagation will be presented. These ideas are applied in a subproblem based constraint propagation approach that learns to find the best bounds for fixing arc directions. Calculation of the initial lower bounds for the subproblems’ “best bounds” uses a branch and bound search. Whenever some problem-specific knowledge through constraint propagation leads to a partial solution of the job shop problem, a complete solution can be obtained with either a branch and bound procedure or some heuristic neighbourhood or priority rule based search. Computational experiments show that the approach can find shorter makespans than other local search approaches. The chapter provides an initial framework for a unified solution approach to many combinatorial optimization problems incorporating techniques from artificial intelligence, e.g. evolutionary algorithms and constraint propagation, and operations research, e.g. metaheuristics and branch and bound.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts EHL and Korst J. Simulated Annealing and Boltzmann Machines. John Wiley& Sons, Chichester, 1989.

    MATH  Google Scholar 

  2. Aarts EHL, van Laarhoven PJM, Lenstra JK, and Ulder NLJ. A computational study of local search shop scheduling. Journal on Computing 1994;6:118–125.

    MATH  Google Scholar 

  3. Aarts EHL and Lenstra JK. Local search in combinatorial optimization. Wiley, New York, 1997.

    MATH  Google Scholar 

  4. Adams J, Balas E, and Zawack D. The shifting bottleneck procedure for job shop scheduling. Management Science 1988;34:391–401.

    Article  MathSciNet  MATH  Google Scholar 

  5. Akers SB. A graphical approach to production scheduling problems. Operations Research 1956;4:244–245.

    Article  Google Scholar 

  6. Anderson EJ, Glass CA, and Potts CN. Local search in combinatorial optimization: applications in machine scheduling. Research Report No. OR56, University of Southampton, 1995.

    Google Scholar 

  7. Applegate D and Cook W. A computational study of the job-shop scheduling problem. ORSA Journal on Computing 1991; 3:149–156.

    Article  MATH  Google Scholar 

  8. Baker JE. Reducing bias and inefficiency in the selection algorithm. In: Grefenstette JJ (ed) Proc. 2nd Int. Conf. on Genetic Algorithms and Their Applications, Lawrence Erlbaum Ass., 1987, pp. 14–21.

    Google Scholar 

  9. Baker KR. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

    Google Scholar 

  10. Balas E. Machine sequencing via disjunctive graphs: an implicit enumeration algorithm. Operations Research 1969; 17: 941–957.

    Article  MathSciNet  MATH  Google Scholar 

  11. Balas E, Lenstra JK, and Vazacopoulos A. One machine scheduling with delayed precedence constraints. Management Science 1995;41:94–109.

    Article  MATH  Google Scholar 

  12. Balas E and Vazacopoulos A. Guided local search with shifting bottleneck for job shop scheduling. Management Science 1998;44:262–275.

    Article  MATH  Google Scholar 

  13. Baptiste P and Le Pape C. A theoretical and experimental comparison of constraint propagation techniques for disjunctive scheduling, Proc. 14th Int. Joint Conf. on Artificial Intelligence (IJCAI), Montreal, Canada, 1995, pp. 136–140.

    Google Scholar 

  14. Blackstone JH, Phillips DT, and Hogg GL. A state of the art survey of dispatching rules for manufacturing job shop operations. International Journal of Production Research 1982;20:27–45.

    Article  Google Scholar 

  15. Blazewicz J. Selected topics in scheduling theory. Annals of Discrete Mathematics 1987;31:1–60.

    MathSciNet  Google Scholar 

  16. Blazewicz J, Domschke W, and Pesch E. The job shop scheduling problem: conventional and new solution techniques. European Journal of Operational Research 1996;93:1–33.

    Article  MATH  Google Scholar 

  17. Blazewicz J, Dror M, and Weglarz J. Mathematical programming formulations for machine scheduling: a survey. European Journal of Operational Research 1991; 51:283–300.

    Article  MATH  Google Scholar 

  18. Blazewicz J, Ecker KH, Pesch E, Schmidt G, and Weglarz J. Scheduling Computer and Manufacturing Processes. Springer, Berlin. 2.edition, 2001.

    MATH  Google Scholar 

  19. Blazewicz J, Pesch E, and Sterna M. A branch and bound algorithm for the job shop scheduling problem. In: Drexl A und Kimms A (eds) Beyond Manufacturing Resource Planning (MRP II), Springer, Berlin, 1998, pp. 219–254.

    Google Scholar 

  20. Blazewicz J, Pesch E, and Sterna M. The disjunctive graph machine representation of the job shop problem, European Journal of Operational Research 2000; 127:317–331.

    Article  MATH  Google Scholar 

  21. Brucker P. An efficient algorithm for the job-shop problem with two jobs. Computing 1988;40:353–359.

    Article  MathSciNet  MATH  Google Scholar 

  22. Brucker P and Jurisch B. A new lower bound for the job-shop scheduling problem. European Journal of Operational Research 1993;64:156–167.

    Article  MATH  Google Scholar 

  23. Brucker P, Jurisch B, and Krämer A. The job-shop problem and immediate selection. Annals of Operations Research 1996;50:73–114.

    Article  Google Scholar 

  24. Brucker P, Jurisch B, and Sievers B. Job-shop (C codes). European Journal of Operational Research 1992;57:132–133.

    Article  Google Scholar 

  25. Brucker P, Jurisch B, and Sievers B. A branch and bound algorithm for the job-shop scheduling problem. Discrete Applied Mathematics 1994;49:107–127.

    Article  MathSciNet  MATH  Google Scholar 

  26. Carlier J. The one machine sequencing problem. European Journal of Operational Research 1982;11:42–47.

    Article  MathSciNet  MATH  Google Scholar 

  27. Carlier J and Pinson E. An algorithm for solving the job-shop problem. Management Science 1989;35:164–176.

    Article  MathSciNet  MATH  Google Scholar 

  28. Carlier J and Pinson E. A practical use of Jackson’s preemptive schedule for solving the job shop problem. Annals of Operations Research 1990;26:269–287.

    MathSciNet  MATH  Google Scholar 

  29. Carlier J and Pinson E. Adjustments of heads and tails for the job-shop problem. European Journal of Operational Research 1994; 78:146–161.

    Article  MATH  Google Scholar 

  30. Caseau Y and Laburthe F. Disjunctive scheduling with task intervals. Working paper, Ecole Normale Superieure, Paris, 1995.

    Google Scholar 

  31. Chretienne P, Coffman EG, Lenstra JK, and Liu Z. Scheduling Theory and its Applications. Wiley, Chichester, 1995.

    MATH  Google Scholar 

  32. Conway RN, Maxwell WL, and Miller LW. Theory of Scheduling. Addison-Wesley, Reading, HA, 1967.

    MATH  Google Scholar 

  33. Crama Y, Kolen A, and Pesch E. Local search in combinatorial optimization, Lecture Notes in Computer Science 1995;931:157–174.

    Article  Google Scholar 

  34. Crowston WB, Glover F, Thompson GL, and Trawick JD. Probabilistic and parametric learning combinations of local job shop scheduling rules. ONR Research Memorandum No. 117, GSIA, Carnegie-Mellon University, Pittsburg, PA, 1963.

    Google Scholar 

  35. Dauzere-Peres S and Lasserre J-B. A modified shifting bottleneck procedure for job-shop scheduling. International Journal of Production Research 1993;31:923–932.

    Article  MATH  Google Scholar 

  36. Davis L. Job shop scheduling with genetic algorithms. In: Grefenstette JJ (ed) Proc. Int. Conf on Genetic Algorithms and Their Applications. Lawrence Erlbaum Ass., 1985, pp. 136–140.

    Google Scholar 

  37. Dechter R. and Pearl J. Network-based heuristics for constraint satisfaction problems. Artificial Intelligence 1988;34:1–38.

    Article  MathSciNet  Google Scholar 

  38. Dell’Amico M and Trubian M. Applying tabu-search to the job shop scheduling problem. Annals of Operations Research 1993;41:231–252.

    Article  MATH  Google Scholar 

  39. Domdorf U and Pesch E. Combining genetic and local search for solving the job shop scheduling problem. In: I. Maros, (ed) Symp. on Applied Mathematical Programming and Modeling APMOD93. Akaprint, Budapest, 1993, pp. 142–149.

    Google Scholar 

  40. Dorndorf U and Pesch E. Variable depth search and embedded schedule neighbourhoods for job shop scheduling. 4th Int. Workshop on Project Managment and Scheduling, 1994, pp. 232–235.

    Google Scholar 

  41. Domdorf U and Pesch E. Evolution based leaming in a job shop scheduling environment. Computers& Operations Research 1995;22:25–40.

    Article  Google Scholar 

  42. Domdorf, U, Pesch E, and Phan Huy T. A time-oriented branch-and-bound algorithm for the resource constrained project scheduling problem with generalised precedence constraints. Management Science 2000;46:1365–1384.

    Article  Google Scholar 

  43. Domdorf U, Pesch E, and Phan Huy T. Constraint propagation techniques for disjunctive scheduling problems. Artificial Intelligence 2000; 122:189–240.

    Article  MathSciNet  Google Scholar 

  44. Domdorf U, Pesch E, and Phan Huy T. Solving the open shop scheduling problem. Journal of Scheduling 2001;4:157–174.

    Article  MathSciNet  Google Scholar 

  45. Domdorf U, Pesch E, and Phan Huy T. Constraint propagation and problem decomposition: how to solve the job shop scheduling problem. Annals of Operations Research (to appear).

    Google Scholar 

  46. Domdorf U, Phan Huy T, and Pesch E. A survey of interval capacity consistency tests for time-and resource-constrained scheduling. In: Weglarz J (ed) Project Scheduling — Recent Models, Algorithms and Applications. Kluwer Academic, Dordrecht, 1999, pp. 213–238.

    Chapter  Google Scholar 

  47. Fisher H and Thompson GL. Probabilistic learning combinations of local job-shop scheduling rules. In: [73].

    Google Scholar 

  48. Giffler B and Thompson GL. Algorithms for solving production scheduling problems. Operations Research 1960;8:487–503.

    Article  MathSciNet  MATH  Google Scholar 

  49. Glover F. Future paths for integer programming and links to artificial intelligence. Computers& Operations Research 1986; 13:533–549.

    Article  MathSciNet  MATH  Google Scholar 

  50. Glover F. Tabu Search-Part I. Journal on Computing 1989;1:190–206.

    MathSciNet  MATH  Google Scholar 

  51. Glover F. Tabu Search-Part II. Journal on Computing 1990;2:4–32.

    MATH  Google Scholar 

  52. Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA, 1989.

    MATH  Google Scholar 

  53. Graham RL, Lawler EL, Lenstra JK, and Rinnooy Kan AHG. Optimization and approximation in deterministic sequencing and scheduling theory: a survey. Annals of Discrete Mathematics 1979;5:287–326.

    Article  MathSciNet  MATH  Google Scholar 

  54. Grefenstette JJ. Incorporating problem specific knowledge into genetic algorithms. In: Davis L (ed) Genetic Algorithms and Simulated Annealing. Pitman, London, 1987, pp. 42–60.

    Google Scholar 

  55. Han CC and Lee CH. Comments on Mohr and Henderson’s path consistency algorithm. Artificial Intelligence 1988;36:125–130.

    Article  MATH  Google Scholar 

  56. Haupt R. A survey of priority-rule based scheduling. OR Spektrum 1989;11:3–16.

    Article  MathSciNet  MATH  Google Scholar 

  57. van Hentenryck P, Deville Y, and Teng C-M. A generic arc-consistency algorithm and its specializations. Artificial Intelligence 1992;57:291–321.

    Article  MathSciNet  MATH  Google Scholar 

  58. Holland JH. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, 1975.

    Google Scholar 

  59. van Laarhoven PJM, Aarts EHL, and Lenstra JK. Job shop scheduling by simulated annealing. Operations Research 1992;40:113–125.

    Article  MathSciNet  MATH  Google Scholar 

  60. Lageweg B, Lawler EL, Lenstra JK, and Rinnooy Kan AHG. Computer aided complexity classification of combinatorial problems. Communications of the ACM 1982;25:817–822.

    Article  MATH  Google Scholar 

  61. Lawler EL, Lenstra JK, Rinnooy Kan AHG, and Shmoys DB. Sequencing and scheduling: algorithms and complexity. In: Graves SC, Rinnooy Kan AHG, and Zipkin PH (eds) Handbooks in Operations Research and Management Science, Vol. 4: Logistics of Production and Inventory. Elsevier, Amsterdam, 1993.

    Google Scholar 

  62. Lenstra JK. Sequencing by Enumerative Methods. Mathematical Center Tract 69, Mathematisch Centrum, Amsterdam, 1977.

    Google Scholar 

  63. Lenstra JK and Rinnooy Kan AHG. Computational complexity of discrete optimization problems. Annals of Discrete Mathematics 1979;4:121–140.

    Article  MathSciNet  MATH  Google Scholar 

  64. Le Pape, C. Implementation of resource constraints in ILOG SCHEDULE. A library for the development of constraint-based scheduling systems. Intelligent Systems Engineering 1994;3:55–66.

    Article  Google Scholar 

  65. Mackworth AK. Consistency in networks of relations. Artificial Intelligence 1977;8:99–118.

    Article  MATH  Google Scholar 

  66. Mackworth, AK and Freuder EC. The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artificial Intelligence 1985;25:65–74.

    Article  Google Scholar 

  67. Manne AS. On the job shop scheduling problem. Operations Research 1960;8:219–223.

    Article  MathSciNet  Google Scholar 

  68. Martin P and Shmoys DB. A new approach to computing optimal schedules for the job shop scheduling problem, Proc. 5th Int. IPCO Conference, 1996.

    Google Scholar 

  69. Meseguer P. Constraint satisfaction problems: an overview. AICOM 1989;2:3–17.

    Google Scholar 

  70. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin, 1992.

    Google Scholar 

  71. Mohr R and Henderson TC. Arc and path consistency revisited. Artificial Intelligence 1986;28:225–233.

    Article  Google Scholar 

  72. Montanari U. Networks of constraints: fundamental properties and applications to picture processing. Information Sciences 1974;7:95–132.

    Article  MathSciNet  MATH  Google Scholar 

  73. Muth JF and Thompson GL (eds). Industrial Scheduling. Prentice Hall, Englewood Cliffs, NJ, 1963.

    Google Scholar 

  74. Nakano R and Yamada T. Conventional genetic algorithm for job shop problems. Proc. 4th Int. Conf. on Genetic Algorithms and their Applications, San Diego, CA, 1991, pp. 474–479.

    Google Scholar 

  75. Nowicki E. and Smutnicki C. A fast taboo search algorithm for the job shop problem. Management Science 1996;42:797–813

    Article  MATH  Google Scholar 

  76. Nuijten, WPM. Time and Resource Constrained Scheduling: A constraint satisfaction approach. PhD Thesis, Eindhoven University of Technology, 1994.

    Google Scholar 

  77. Nuijten, WPM and Aarts EHL. A computational study of constraint satisfaction for multiple capacitated job-shop scheduling. European Journal of Operational Research 1996;90:269–284.

    Article  MATH  Google Scholar 

  78. O’Grady PJ and Harrison C. A general search sequencing rule for job shop sequencing. Internationaljournal of Production Research 1985;23:951–973.

    Google Scholar 

  79. Panwalkar SS and Iskander W. A survey of scheduling rules. Operations Research 1977;25:45–61.

    Article  MathSciNet  MATH  Google Scholar 

  80. Papadimitriou CH and Steiglitz K. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliff, NJ, 1982.

    MATH  Google Scholar 

  81. Pesch E and Glover F. TSP ejection chains. Discrete Applied Mathematics 1997;76:165–181.

    Article  MathSciNet  MATH  Google Scholar 

  82. Pesch E and Tetzlaff U. Constraint propagation based scheduling of job shops. Journal on Computing 1996;8:144–157.

    MATH  Google Scholar 

  83. Pesch E and Voß S. Strategies with memories: local search in an application oriented environment. OR Spektrum 1995;17:55–66.

    Article  MATH  Google Scholar 

  84. Phan Huy T. Constraint propagation inflexible manufacturing. Springer, Berlin, 2000.

    Book  Google Scholar 

  85. Pinedo M. Scheduling Theory, Algorithms and Systems. Prentice Hall, Englewood Cliffs NJ, 1995.

    MATH  Google Scholar 

  86. Potts CN. Analysis of a heuristic for one machine sequencing with release dates and delivery times. Operations Research 1980;28:1436–1441.

    Article  MathSciNet  MATH  Google Scholar 

  87. Rinnooy Kan AHG. Machine Scheduling Problems: Classification, Complexity and Computations. Nijhoff, The Hague, 1976.

    Google Scholar 

  88. Roy B and Sussman B. Les problemes d'ordonnancement avec contraintes disjonctives. SEM A, Note D.S. No. 9., Paris, 1964.

    Google Scholar 

  89. Sadeh N. Look-ahead techniques for micro-opportunistic job shop scheduling. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 1991.

    Google Scholar 

  90. Tanaev VS, Gordon VS, and Shafransky YM. Scheduling Theory: Single-Stage Systems. Kluwer Academic, Dordrecht, 1994.

    Book  MATH  Google Scholar 

  91. Tanaev VS, Sotskov YN, and Strusevich VA. Scheduling Theory: Multi-Stage Systems. Kluwer Academic Publ., Dordrecht, 1994.

    Book  MATH  Google Scholar 

  92. Vaessens RJM. Generalized Job Shop Scheduling: Complexity and Local Search. Dissertation, University of Technology Eindhoven, 1995.

    Google Scholar 

  93. Vaessens RJM, Aarts EHL, and Lenstra JK. Job shop scheduling by local search. Journal on Computing 1996;8:302–317.

    MATH  Google Scholar 

  94. van de Velde S. Machine Scheduling and Lagrangian Relaxation. Dissertation, CWI Amsterdam, 1991.

    MATH  Google Scholar 

  95. Waltz D. Understanding line drawings of scenes with shadows. In: Winston, PH (ed) Psychology of Computer Vision. McGraw-Hill, Cambridge, MA, 1975.

    Google Scholar 

  96. Yamada T and Nakano R. A genetic algorithm applicable to large-scale job-shop problems. In: Männer R and Manderick B (eds) Proc. 2nd. Int. Workshop on Parallel Problem Solving from Nature, 1992, pp. 281–290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Domdorf, U., Pesch, E., Huy, T.P. (2003). Machine Learning by Schedule Decomposition — Prospects for an Integration of AI and OR Techniques for Job Shop Scheduling. In: Ghosh, A., Tsutsui, S. (eds) Advances in Evolutionary Computing. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18965-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18965-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62386-8

  • Online ISBN: 978-3-642-18965-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics