Skip to main content

Osmoregulation und Exkretion

  • Chapter
  • 1764 Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Wasser ist die Grundlage aller Lebensvorgänge. Im Wasser ist das Leben auf der Erde entstanden und alle Lebewesen bestehen überwiegend aus Wasser. Der relative Anteil des Wassers an der gesamten Körpermasse von Tieren beträgt 60–90%. Wenn man nur die Weichteile des Körpers berücksichtigt, also ohne Exo- oder Endoskelett, so steigt der Anteil des Wassers auf mehr als 90%. Im Körperwasser sind Salze, Nährstoffe, Eiweiße und andere Stoffwechselprodukte gelöst, und in dieser wässrigen Lösung laufen alle biochemischen Reaktionen ab, die den Organismus am Leben erhalten und dessen Wachstum und Vermehrung ermöglichen. Alle Reaktionspartner, Enzyme, Cofaktoren und Ionen, die an dieser komplexen biochemischen Maschinerie mitwirken, müssen deshalb stets in der „richtigen“ Menge vorhanden sein. Dies gilt sowohl für die molaren Mengen der einzelnen Ionen und Stoffwechselprodukte (Molarität) als auch für die Anzahl der insgesamt in der Körperflüssigkeit gelösten Teilchen (Osmolarität), die beide geregelt werden, um eine Homoiostase ihres inneren Milieus zu erreichen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Allen RD (2000) The contractile vacuole and its membrane dynamics. Bioessays 22:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Naitoh Y (2002) Osmoregulation and contractile vacuoles of protozoa. Int Rev Cytol 215:351–394

    Article  PubMed  CAS  Google Scholar 

  • Barnes RD (1987) Invertebrate Zoology. Saunders College Publications, Philadelphia

    Google Scholar 

  • Beeuwkes R (1982) Renal countercurrent mechanisms, or how to get something for (almost) nothing. In: Taylor RC, Johansen K, Bolis L (eds) A companion to animal physiology. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Beuchat CA (1990) Body size, medullary thickness, and urine concentrating ability in mammals. Am J Physiol 258:R298–R305

    PubMed  CAS  Google Scholar 

  • Beuchat CA (1996) Structure and concentrating ability of the mammalian kidney: correlations with habitat. Am J Physiol 271:R157–R179

    PubMed  CAS  Google Scholar 

  • Beyenbach KW (2001) Energizing epithelial transport with vacuolar H+-ATPase. News Physiol Sci 16:145–151

    PubMed  CAS  Google Scholar 

  • Boroffka I (1965) Elektrolyttransport im Nephridium von Lumbricus terrestris. Z vergl Physiol 51:25–48

    Article  Google Scholar 

  • Brauer EB (1975) Osmoregulation in the freshwater sponge, Spongilla lacustris. J exp Zool 192:181–192

    Article  Google Scholar 

  • Brauer EB, McKanna JA (1978) Contractile vacuoles in cells of a fresh water sponge, Spongilla lacustris. Cell Tissue Res 192:309–317

    Article  PubMed  CAS  Google Scholar 

  • Brownfield MS, Wunder BA (1976) Relative medullary index: a new structural index for estimating urine concentrating capacity of mammals. Comp Biochem Physiol 55A:69–75

    Article  Google Scholar 

  • Cogan MG (1990) Renal effects of atrial natriuretic factor. Ann Rev Physiol 52:699–708

    Article  CAS  Google Scholar 

  • de Groot BL, Grubmüller H (2001) Water permeation across biological membranes: mechanisms and dynamics of Aquaporin-1 and GlpF. Science 294:2353–2358

    Article  PubMed  Google Scholar 

  • Diamond JM, Bossert WH (1967) Standing-gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50:2061–2083

    Article  PubMed  CAS  Google Scholar 

  • Evans DH (1990) An emerging role for a cardiac peptide hormone in fish Osmoregulation. Ann Rev Physiol 52:43–60

    Article  CAS  Google Scholar 

  • Ehrenfeld J, Klein U (1997) The key role of the H+ V-ATPase in acid-base balance and Na+ transport processes in frog skin. J Exp Biol 200:247–256

    PubMed  CAS  Google Scholar 

  • Feder ME, Gonzalez RJ, Robbins T, Talbot CR (1993) Bulk flow of the medium and cutaneous sodium uütake in frogs: potential significance of sodium and oxygen boundary layers. J exp Biol 174:235–246

    PubMed  CAS  Google Scholar 

  • Goodrich ES (1954) The study of nephridia and genital ducts since 1895. Quart J Microsc Sci 86:113–317

    Google Scholar 

  • Graszynski K (1963) Die Feinstruktur des Nephridialkanals von Lumbricus terrestris L. Eine elektronenmikroskopische Untersuchung. Zool Beitr 8:189–296

    Google Scholar 

  • Guyton AC (1986) Textbook of medical physiology. Saunders, Philadelphia

    Google Scholar 

  • Hausmann K (1985) Protozoologie. Thieme, Stuttgart

    Google Scholar 

  • Hildebrandt JP (2001) Coping with excess salt: adaptive functions of extrarenal osmoregulatory organs in vertebrates. Zoology 104:209–220

    Article  PubMed  CAS  Google Scholar 

  • Hill RW, Wyse GA (1989) Animal Physiology. Harper & Row, New York

    Google Scholar 

  • Hillman SS (1980) Physiological correlates of differential dehydration tolerance in anuran amphibians. Copeia 1980:125–129

    Article  Google Scholar 

  • Ishida M, Aihara MS, Allen RD, Fok AK (1993) Osmoregulation in Paramaecium: the locus of fluid segregation in the contractile vacuole complex. J Cell Sci 106:693–702

    PubMed  Google Scholar 

  • Marshall WS, Bryson SE (1998) Transport mechanisms of sea-water teleost chloride cells: an inclusive model of a multifunctional cell. Comp Biochem Physiol 119A:97–106

    CAS  Google Scholar 

  • Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosintriphosphatases. Physiol Rev 79:361–385

    PubMed  CAS  Google Scholar 

  • Perry SF (1997) The chloride cell: Structure and function in the gills of freshwater fishes. Ann Rev Physiol 59:325–347

    Article  CAS  Google Scholar 

  • Potts WTW, Parry G (1965) Osmotic and ionic regulation in animals. Pergamon, Oxford

    Google Scholar 

  • Ramsay JA (1949) The site of formation of hypotonic urine in the nephridium of Lumbricus. J Exp Biol 26:65–75

    PubMed  CAS  Google Scholar 

  • Reeves WB, Winters CJ, Andreoli TE (2001) Chloride channels in the loop of Henle. Ann Rev Physiol 63:631–645

    Article  CAS  Google Scholar 

  • Riddick DH (1968) Contractile vacuole in the amoeba Pelomyxa carolinensis. Am J Physiol 215:736–740

    PubMed  CAS  Google Scholar 

  • Ruppert EE, Smith PR (1988) The functional organization of the filtration nephridia. Biol Rev 63:231–258

    Article  Google Scholar 

  • Schmidt-Nielsen K (1960) The salt-secreting glands of marine birds. Circulation 21:955–967

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen B (1972) Mechanisms of urea excretion by the vertebrate kidney. In: Campbell JW, Goldstein L (eds) Nitrogen metabolism and the environment. Academic Press, London, pp 79–103

    Google Scholar 

  • Schmuck R, Linsenmair KE (1997) Regulation of body water balance in Reedfrogs (Superspecies Hyperolius viridiflavus and Hyperolius marmoratus: Amphibia, Anura, Hyperoiliidae) living in unpredictably varying savannah environments. Comp Biochem Physiol 118A:1335–1352

    Article  CAS  Google Scholar 

  • Shoemaker VH, Bickler PE (1979) Kidney and bladder function in the uricotelic treefrog (Phyllomedusa sauvagei). J Comp Physiol 133:211–218

    CAS  Google Scholar 

  • Shoemaker VH, Nagy K (1977) Osmoregulation in amphibians and reptiles. Ann Rev Physiol 39:449–471

    Article  CAS  Google Scholar 

  • Stock C, Gronlien HK, Allen RD (2002) The ionic composition of the contractile vacuole fluid of Paramecium mirrors ion transport across the plasma membrane. Eur J Cell Biol Sep 81(9):505–515

    Article  CAS  Google Scholar 

  • Takei Y (2001) Does the natriuretic peptide system exist throughout the animal and plant kingdom. Comp Biochem Physiol 129B:559–573

    CAS  Google Scholar 

  • Ullrich KJ, Kramer K, Boylan JW (1961) Present knowledge of the counter current system in the mammalian kidney. Prog Cardiovasc Dis 3:395–431

    Article  PubMed  CAS  Google Scholar 

  • Ussing HH, Zeran K (1951) Active transport of sodium as the source of electric current in the short-circuited frog skin. Acta Physiol Scand 23:110–127

    Article  PubMed  CAS  Google Scholar 

  • Ussing HH (1967) Symposium on membrane transport. Active exchanges. Proc R Soc Med 60:317–319

    CAS  Google Scholar 

  • Wenning A, Zerbst-Boroffka I, Bazin B (1980) Water and salt excretion in Hirudo medicinalis. J Comp Physiol 139:97–102

    Google Scholar 

  • Wenning A (1995) Neural regulation of salt excretion in leeches. Verh dt zool Ges 88:103–118

    Google Scholar 

  • Wieczorek H, Brown D, Grinstein S, Ehrenfeld J, Harvey WR (1999) Animal plasma membrane energetization by proton-motive V-ATPases. Bioessays 21:637–648

    Article  PubMed  CAS  Google Scholar 

  • Zerbst-Boroffka I, Bazin B, Wenning A (1997) Chloride secretion drives urine formation in leech nephridia. J Exp Biol 200:2217–2227

    PubMed  CAS  Google Scholar 

  • Zeuthen T (1992) From contractile vacuole to leaky epithelia. Coupling between salt and water fluxes in biological membranes. Biochim Biophys Acta 1113:229–258

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heldmaier, G., Neuweiler, G. (2004). Osmoregulation und Exkretion. In: Vergleichende Tierphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18950-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18950-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62374-5

  • Online ISBN: 978-3-642-18950-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics