Skip to main content

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

„Blut ist ein ganz besondrer Saft“, sagt Mephisto zu Faust, damit dieser ihren teuflischen Pakt mit einem Tropfen Blut besiegele. Blut steht in unserer Sprache als Symbol für Lebenskraft. Wir können heißblütig, kaltblütig, blutjung sein, oder blutleer vor Schrecken. Das Blut kocht in unseren Adern vor Wut, wenn wir sehen, mit wie viel sinnlosem Blutvergießen die Geschichte der Menschheit geschrieben wurde. Das Blut gefriert in unseren Adern, wenn wir an die stümperhaften ersten Versuche denken, mit denen sich die Menschen durch Blutübertragung Lebenskraft verschaffen wollten. Im alten Rom stürmten die Zuschauer die Arena, um das Blut der Gladiatoren zu trinken, in der Hoffnung, deren Stärke zu erhalten. Der im Sterben liegende Papst Innozenz VIII musste 1492 auf ärztliche Empfehlung das Blut von drei Knaben trinken, in der Hoffnung, dass er sich verjüngen würde. Die drei Knaben überlebten diesen Versuch nicht und der Papst wurde nicht gesund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ackers GK, Doyle ML, Meyers D, Daugherty MA (1992) Molecular code for cooperativity in hemoglobin. Science 255:54–63

    Article  PubMed  CAS  Google Scholar 

  • Bargelloni L, Marcato S, Patarnello T (1998) Antarctic fish hemoglobins: Evidence for adaptive evolution at subzero temperatures. Proc Nat Acad Sei USA 95:8670–8675

    Article  CAS  Google Scholar 

  • Bartlett GR (1980) Phosphate Compounds in vertebrate red blood cells. Amer Zool 20:103–114

    CAS  Google Scholar 

  • Barnes RD (1987) Invertebrate Zoology. Saunders College Publ, Philadelphia

    Google Scholar 

  • Bayer R (1968) Untersuchungen am Kreislaufsystem der Wanderheuschrecke (Locusta migratoria) mit besonderer Berücksichtigung des Blutdrucks. Z vergl Physiol 58:76–136

    Article  Google Scholar 

  • Bonaventura C, Bonaventura J (1980) Hemocyanins: Relationship in their strueture funetion and assembly. Amer Zool 20:7–12

    CAS  Google Scholar 

  • Bonaventura C, Bonaventura J (1983) Respiratory pigments: Strueture and funetion. In: Hochachka PW (ed) The Mollusca, Vol 2, Environmental biochemistry and physiology. Academic Press, New York, pp 1–50

    Google Scholar 

  • Bridges CR, Berenbrink M, Müller R, Waser W (1998) Physiology and biochemistry of the pseudobranch: an un-answered question. Comp Biochem Physiol 119A:67–77

    CAS  Google Scholar 

  • Brittain T (1987) The Root effect. Comp Biochem Physiol 86B:473–481

    CAS  Google Scholar 

  • Bunn HF (1980) Regulation of hemoglobin funetion in mammals. Amer Zool 20:199–211

    CAS  Google Scholar 

  • Bürmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407:520–523

    Article  PubMed  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemo-cyanins and related proteins. J Comp Physiol 172:95–107

    CAS  Google Scholar 

  • Calder WA (1981) Scaling of physiological processes in homeothermic animals. Ann Rev Physiol 43:301–322

    Article  Google Scholar 

  • Doeller JE, Kraus DW, Colacin JM, Wittenberg JB (1988) Gill hemoglobin may deliver sulphide to bacterial symbionts of Soleyma velum (Bivalvia, Mollusca). Biol Bull 175:388–396

    Article  CAS  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: Evolution in a unique environment. Academic Press, San Diego

    Google Scholar 

  • Florey E (1970) Lehrbuch der Tierphysiologie, Thieme, Stuttgart

    Google Scholar 

  • Friedberg EC, Feaver WJ, Gerlach VL (2000) The many faces of DNA polymerases: strategies for mutagenesis and for mutational avoidance. Proc Natl Acad Sei USA. 97:5681–5683

    Article  CAS  Google Scholar 

  • Gaykema WPJ, Hol WGJ, Vereijken JM, Soeter NM, Bak HJ, Beintem JJ (1984) A strueture of the copper containing, oxygen-carrying protein Panulirus interruptus hemoeyanin. Nature 309:23–29

    Article  CAS  Google Scholar 

  • Gupta AP (1985) Cellular elements in the haemolymph. In: Kerkut GA, Gilbert LI (eds) comprehensive insect physiology, biochemistry and pharmacology, Vol 3 Integument, respiration and circulation. Pergamon, Oxford, pp 401–451

    Google Scholar 

  • Guyton AC (1986) Textbook of medical physiology. Saunders, Philadelphia

    Google Scholar 

  • Hall FG, Dill DB, Barron ESG (1936) Comparative physiology in high altitudes. Z Cell Comp Physiol 8:301–313

    Article  CAS  Google Scholar 

  • Hargens AR, Miliard RW, Petterson K, Johansen K (1987) Gravitational haemodynamics and oedema prevention in the giraffe. Nature 329:59–60

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Klaus S, Wiesinger U, Friedrichs U, Wenzel M (1989) Cold aeclimation and thermogenesis. In: Malan A, Canguilhem B (eds), Living in the Cold II. John Libbey Eurotext, London

    Google Scholar 

  • Hemmingsen EA (1965) Accelerated transfer of oxygen through Solutions of heme pigments. Acta Physiol Scand, Suppl 246:1–53

    Google Scholar 

  • Hendrickson WA, Smith JL, Sheriff S (1985) Strueture and funetion of hemerythrins. In: Lamy J, Truchot J-P, Gilles R (eds) Respiratory pigments in animals: Relation strueturefunetion, Springer, Berlin Heidelberg New York Tokyo, pp 1–7

    Chapter  Google Scholar 

  • Hildebrandt JP (1988) Circulation in the leech, Hirudo medicinalis (L.). J exp Biol 134:235–246

    Google Scholar 

  • Hildemann WH, Johnson IS, Jokiel PL (1979) Immunocompetence in the lowest metazoan phylum: Transplantation immunity in sponges. Science 204:420–422

    Article  PubMed  CAS  Google Scholar 

  • Hildemann WH, Raison RL, Cheung G, Hüll CJ, Akala L, Okamoto J (1977) Immunological speeificity and memory in a scleractinian coral. Nature 270:219–223

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW (2000) Pinniped diving response mechanism and evolution: a window on the paradigm of comparative biochemistry and physiology. Comp Biochem Physiol 126A:435–458

    CAS  Google Scholar 

  • Holmes MA, LeTrong I, Turley S, Sieker LC, Stenkamp RE (1991) Structures of the deoxy and oxyhemerythrin at 2.0 Ä resolution. J Mol Biol 218:583–593

    Article  PubMed  CAS  Google Scholar 

  • Johansen K (1962) Cardiac Output and pulsatile flow in the teleost Gadus morhua. Comp Biochem Physiol 7:169–174

    Article  PubMed  CAS  Google Scholar 

  • Johansen K, Martin AW (1965) Circulation in a giant earthworm, Glossoscolex giganteus. I. Contractile processes and pressure gradients in the large blood vessels. J exp Biol 43:333–347

    Google Scholar 

  • Jones DR (1996) The crocodilian central circulation: reptilian or avian? Verh Deutsche Zool Ges 89:209–218

    Google Scholar 

  • Jones JC (1977) The circulatory System of insects. CC Thomas, Springfield

    Google Scholar 

  • Jürgens KD, Pietschmann M, Yamaguchi K, Kleinschmidt T (1988) Oxygen binding properties, capillary densities and heart weights in high altitude camelids. J Comp Physiol B 158:469–477

    Article  PubMed  Google Scholar 

  • Klotz IM, Klippenstein GL, Hendrickson WA (1976) Hemerythrin: An alternative oxygen carrier. Science 192:335–344

    Article  PubMed  CAS  Google Scholar 

  • Klotz IM, Klotz A, Fiess HA (1957) The nature of the active site of hemerythrin. Arch Biochem Biophys 68:284–299

    Article  PubMed  CAS  Google Scholar 

  • Kreuzer F (1970) Facilitated diffusion of oxygen and its possible signifkance; a review. Respir Physiol 9:1–30

    Article  PubMed  CAS  Google Scholar 

  • Kreienbühl G, Strittmatter J, Ayim E (1976) Blood gas analysis of hibernating hamsters and dormice. Pflügers Arch 366:167–172

    Article  PubMed  Google Scholar 

  • Lasiewski RC, Calder WA (1971) A preliminary allometric analysis of respiration variables in birds. Respir Physiol 11:152–166

    Article  PubMed  CAS  Google Scholar 

  • Lehninger AL (1975) Biochemistry, 2nd ed. Worth Publishers, New York

    Google Scholar 

  • Lillywhite HB (1993) Orthostatic intolerance of viperid snakes. Physiol Zool 66:1000–1014

    Google Scholar 

  • Longo D (1986) Respiratory gas exchange in the placenta. In: Farhi LE, Tenney SM (eds) Handbook of physiology, Section 3: The respiratory System, vol IV. American Physiol Soc, Bethesda

    Google Scholar 

  • Malan A, Arens H, Waechter A (1973) Pulmonary respiration and aeid-base State in hibernating marmots and hamsters. Respir Physiol 17:45–61

    Article  PubMed  CAS  Google Scholar 

  • Malan A, Wilson T, Reeves RB (1976) Intracellular pH in cold-blooded vertebrates as a funetion of body temperature. Respir Physiol 28:29–47

    Article  PubMed  CAS  Google Scholar 

  • Markl J, Decker H (1992) Molecular strueture of the arthropod hemoeyanins. In: Mangum CP (ed) Advances in Comparative and Environmental Physiology, Vol 13. Blood and tissue oxygen carriers. Springer, Berlin Heidelberg New York Tokyo, pp 325–376

    Chapter  Google Scholar 

  • MacFarlane RG (1964) An enzyme cascade in the blood clotting mechanism, and its funetion as a biochemical amplifier. Nature 202:498–499

    Article  PubMed  CAS  Google Scholar 

  • Martin AW, Johansen K (1965) Adaptations of circulation in invertebrate animals. In: Handbook of Physiology, Sect 2, vol 3, pp 2545–2581

    Google Scholar 

  • McLaughlin PA (1980) Comparative morphology of recent crustacea. Freeman, New York

    Google Scholar 

  • Mortola JP, Frappell PB (2000) Ventilatory responses to changes in temperatures in mammals and other vertebrates. Ann Rev Physiol 62:847–874

    Article  CAS  Google Scholar 

  • Orii Y, Washio N (1977) Reaction of Chlorocruorin with heme iron ligands and carbonyl reagents. J Biochem 81:495–503

    PubMed  CAS  Google Scholar 

  • Pelster B, Weber R (1991) The physiology of the root effect. In: Advances in Comparative and environmental physiology, Vol. 8. Springer, Berlin Heidelberg New York Tokyo, pp 51–77

    Chapter  Google Scholar 

  • Pelster B (1997) Buoyancy at depth. In: Randall D, Farrell AP Deepsea fishes. Academic Press, San Diego, pp 195–237

    Chapter  Google Scholar 

  • Pelster B (2001) The generation of hyperbaric oxygen tensions in fish. News Physiol Sei 16:287–291

    CAS  Google Scholar 

  • Perutz MF (1983) Species adaptation in a protein molecule. Mol Biol Evol 1:1–28

    PubMed  CAS  Google Scholar 

  • Perutz MF (1990) Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Ann Rev Physiol 52:1–25

    Article  CAS  Google Scholar 

  • Pettigrew DW et al (1982) Probing the energetics of proteins through structural perturbation: Structures of regulatory energy in the human hemoglobin. Proc Nat Acad Sei USA 79:1849–1853

    Article  CAS  Google Scholar 

  • Powers DA (1980) Molecular ecology of teleost fish hemoglobins; Strategies for adapting to changing environments. Amer Zool 20:139–162

    CAS  Google Scholar 

  • Rahn H (1974) Body temperature and aeid-base regulation. Pneumologie 151:87–94

    Article  CAS  Google Scholar 

  • Reeves RB (1985) Alphastat regulation of intracellular aeidbase? In: Gilles R (ed) Circulation, Respiration, and Metabolism. Springer, Berlin Heidelberg New York Tokyo, pp 414–423

    Chapter  Google Scholar 

  • Rigss A (1988) The Bohr effect. Ann Rev Physiol 50:181–204

    Article  Google Scholar 

  • Romer AS (1971) Vergleichende Anatomie der Wirbeltiere. Parey, Hamburg

    Google Scholar 

  • Root RW (1931) The respiratory funetion of the blood of marine fishes. Biol Bull 61:427–456

    Article  CAS  Google Scholar 

  • Schmidt RF, Thews G (eds) (1995) Physiologie des Menschen. 26. Aufl. Springer, Berlin Heidelberg New York Tokyo Schmidt

    Google Scholar 

  • Nielsen K (1970) Energy metabolism, body size, and problems of scaling. Fed Proc 29:1524–1532

    Google Scholar 

  • Schmidt-Nielsen K (1972) How animals work. Cambridge Univ Press, London

    Google Scholar 

  • Schmidt-Nielsen (1975) Animal physiology. Adaptation and environment. Cambridge Univ Press, London

    Google Scholar 

  • Schmidt-Nielsen K, Pennycuik P (1961) Capillary density in mammals in relation to body size and oxygen consumption. Am J Physiol 200:746–750

    PubMed  CAS  Google Scholar 

  • Schneider HJ et al (1984) Partial amino aeid sequence of Helix pomatia hemoeyanin: Tyrosinase and hemoeyanins have a common ancestor. Union Biol Sei Ser A 155

    Google Scholar 

  • Scholander PF (1960) Oxygen transport through hemoglobin Solutions. Science 131:585–590

    Article  PubMed  CAS  Google Scholar 

  • Scholander PF (1964) Animals in aquatic environments; diving mammals and birds. In: Dill DB, Adolph EFV, Wilbur CJ. Handbook of physiology. Sect 4. American Physiol Soc, Washington

    Google Scholar 

  • Sidell BD et al (1997) Variable expression of myoglobin among the hemoglobinless Antarctic icefishes. Proc Natl Acad Sei USA 94:3420–3424

    Article  CAS  Google Scholar 

  • Stahl WR (1965) Organ weights in primates and other mammals. Science 150:1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Stahl WR (1967) Scaling of respiratory variables in mammals. J Appl Physiol 22:453–460

    PubMed  CAS  Google Scholar 

  • Stevens ED, Benion GB, Randall DJ, Shelton G (1972) Factors affecting arterial pressure and blood flow from the heart of intact, unrestrained lingeod, Ophiodon elongatus. Comp Biochem Physiol 43A:681–695

    Article  Google Scholar 

  • Terwilliger NB (1998) Functional adaptations of oxygen-transport proteins. J Exp Biol 201:1085–1098

    PubMed  CAS  Google Scholar 

  • Trenczek T (1998) Endogenous defense mechanisms of insects. Zoology 101:298–315

    Google Scholar 

  • Truchot JP (1978) Mechanisms of extracellular aeid-base regulation as temperature changes in decapod crustaceans. Respir Physiol 33:161–176

    Article  PubMed  CAS  Google Scholar 

  • van Citters RL, Kemper WS, Franklin DL (1968) Blood flow and pressure in the giraffe carotid artery. Comp Biochem Physiol 24:1035–1042

    Article  PubMed  Google Scholar 

  • van Holde KE (1997) Respiratory proteins of invertebrates: Structure, funetion and evolution. Zoology 100:287–297

    Google Scholar 

  • Weber RE (1978) Respiratory pigments. In: Hill PJ (ed) Physiology of annelids. Academic Press, New York

    Google Scholar 

  • Weber RE, Baldwin J (1985) Blood and erythrocruorin of the giant earthworm, Megascolides australis: Respiratory characteristics and evidence for CO2 facilitation of O2 binding. Mol Physiol 7:93–106

    CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (1974) The choroids rete mirabile of the fish eye. I. Oxygen secretion and structure: comparison with the swimbladder rete mirabile. Biol Bull 146:116–136

    Article  PubMed  CAS  Google Scholar 

  • Weber RE (1992) Molecular strategies in the adaptation of vertebrate hemoglobin funetion. In: Wood SC, Weber RE, Hargens AR, Miliard RW (eds) Physiological adaptations in vertebrates: Respiration, Circulation and metabolism. Dekker, New York pp 257–277

    Google Scholar 

  • Wigglesworth VB (1955) Physiologie der Insekten, Birkhäuser, Basel

    Google Scholar 

  • Wood SC, Weber RE, Hargens AR, Milard RW (1992) Physiological adaptations in vertebrates. Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heldmaier, G., Neuweiler, G. (2004). Blut. In: Vergleichende Tierphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18950-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18950-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62374-5

  • Online ISBN: 978-3-642-18950-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics