Skip to main content

Part of the book series: Springer-Lehrbuch ((SLB))

  • 1851 Accesses

Zusammenfassung

Am 8. Mai 1794 bestieg Antoine Laurent Lavoisier die Guillotine und wurde auf Weisung des Revolutionstribunals hingerichtet. Damit endete das Leben eines Mannes, der zu den genialsten Naturforschern des 18. Jahrhunderts zählte. Das Tribunal jedoch befand: „Wir brauchen keine Gelehrten mehr“.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ackermann RA (1977) The respiratory gas exchange of sea turtle nests (Chelonia, Caretta). Respir Physiol 31:19–38

    Article  Google Scholar 

  • Allan JD (1995) Stream ecology: Structure and function of running waters. Chapmann & Hall, London, p 388

    Google Scholar 

  • Baudinette RV, Gannon BJ, Runciman WR, Wells S (1987) Do cardiorespiratory frequencies show entrainment with hopping in the Tammar Wallaby? J Exp Biol 129:251–263

    PubMed  CAS  Google Scholar 

  • Barnes RD (1987) Invertebrate Zoology. Saunders, Philadelphia

    Google Scholar 

  • Boutilier RG (1990) Respiratory gas tensions in the environment. In: Boutilier RG (ed) Vertebrate gas exchange from environment to cell. Springer, Berlin Heidelberg New York Tokyo, pp 1–13

    Chapter  Google Scholar 

  • Boutilier RG (ed) (1990) Vertebrate gas exchange from environment to cell. Springer, Heidelberg Berlin New York Tokyo

    Google Scholar 

  • Bretz WL, Schmidt-Nielsen K (1972) Movement of gas in the respiratory System of the duck. J Exp Biol 56:57–65

    Google Scholar 

  • Burggren W, Dünn J, Barnard K (1979) Branchial circulation and gill morphmetrics in the sturgeon Acipenser trans-montanus, an ancient Chondrosteian fish. Can J Zool 57:2160–2170

    Article  Google Scholar 

  • Burggren W, Roberts J (1991) Respiration and metabolism. In: Prosser CL (ed) Environmental and metabolic animal physiology. Wiley-Liss, New York, pp 353–435

    Google Scholar 

  • Childress JJ, Seibel BA (1998) Life at stable low oxygen levels: Adaptations of animals to oceanic oxygen minimum layers. J Exp Biol 201:1211–1221

    Google Scholar 

  • Clements JA, Nellebogen J, Trahan HJ (1970) Pulmonary Surfactant and evolution of the lungs. Science 169:603–604

    Article  PubMed  CAS  Google Scholar 

  • Clements JA (1997) Lung Surfactant: a personal perspective. Ann Rev Physiol 59:1–21

    Article  CAS  Google Scholar 

  • Comroe JH (1966) The Lung. Sei Amer 230:227–236

    Google Scholar 

  • Crutzen PJ, Ramanathan V (2000) The ascent of atmosphe-ric sciences. Science 290:299–305

    Article  CAS  Google Scholar 

  • Czihak G, Langer H, Ziegler H (1976) Biologie. Springer, p435

    Google Scholar 

  • Daniels CB, Orgeig S (2001) The comparative biology of pulmonary Surfactant: past, present and future. Comp Biochem Physiol A 129:9–36

    Article  CAS  Google Scholar 

  • Dejours P (1966) Respiration. Oxford Univ Press, New York, pp 244

    Google Scholar 

  • Dejours P (1975) Principles of comparative respiratory physiology. North-Holland Publ Comp, Amsterdam

    Google Scholar 

  • Dejours P (1982) Mount Everest and beyond. In: Taylor CR et al (eds) A companion to animal physiology, Cambridge Univ Press, Cambridge, pp 17–30

    Google Scholar 

  • DeLong RL, Stewart BS (1991) Diving patterns of northern elephant seals. Mar Mamm Sei 7:369–384

    Article  Google Scholar 

  • Dolk HE, Postma N (1927) Über die Haut-und die Lungenatmung von Rana temporaria. Z vergl Phys 5:417–444

    Google Scholar 

  • Dudley R (1998) Atmospheric oxygen, giant palaeozoic in-sects and the evolution of aerial locomotor Performance. I Exp Biol 201:1043–1050

    CAS  Google Scholar 

  • Duncker HR (2001) The emergence of macroscopic complexity. An outline of the history of the respiratory apparatus of vertebrates from diffusion do language produetion. Zoology 103:240–259

    Google Scholar 

  • Ege R (1915) On the respiratory function of the air Stores carried by some aquatic insects (Corixidae, Dytiscidae and Notonecta) Z Allg Physiol 17:81–124

    Google Scholar 

  • Falke KJ et al (1985) Seal lungs collaps during free diving: evidence from arterial nitrogen concentrations. Science 229:556–558

    Article  PubMed  CAS  Google Scholar 

  • Farrelly CA, Greenaway P (1994) Gas exchange through the lungs and gills in air-breathing crabs. J Exp Biol 187:113–130

    PubMed  Google Scholar 

  • Feder ME, Burggren W (1985 a) Cutaneous gas exchange in vertebrates: design, patterns, control and implications. Biol Rev 60:1–45

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Burggren W (1985 b) Skin breathing in vertebrates. Sei Am 253:126–142

    Google Scholar 

  • Foelix S (1992) Biologie der Spinnen. Thieme, Stuttgart

    Google Scholar 

  • Gans C, Dejongh HJ, Farber J (1969) Bullfrog (Rana catesbeiana) Ventilation: How does the frog breathe? Science 163:1223–1225.

    Article  PubMed  CAS  Google Scholar 

  • Guimond R, Hutchison VH (1972) Pulmonary, brachial and cutaneous gas exchange in the mud puppy, Necturus maculosus maculosus. Comp Biochem Physiol 42A:367–392

    Article  Google Scholar 

  • Harvey EN (1928) The oxygen consumption of luminous bacteria. J Gen Physiol 11:469–475

    Article  PubMed  CAS  Google Scholar 

  • Hill RW, Wyse GA (1989) Animal Physiology, Harper & Row, New York

    Google Scholar 

  • Hindell MA, Slip DJ, Burton HR, Bryden MM (1992) Physiological implications of continuous, prolonged, and deep dives of the southern elephant seal (Mirounga leonine). Can J Zool 70:370–379

    Article  Google Scholar 

  • Hlastala MP, Berger AJ (2001) Physiology of Respiration. 2nd ed, Oxford Univ Press, pp 251

    Google Scholar 

  • Hughes GM (1984) General anatomy of the gills. In: Hoar WS, Randall DJ (eds) Fish Physiology, Vol. 10A. Academic Press, Orlando/FL, pp 1–72

    Google Scholar 

  • Hughes GM (1984) Scaling of respiratory areas in relation to oxygen consumption of vertebrates. Experientia 40:519–524

    Article  PubMed  CAS  Google Scholar 

  • Hughes GM, Morgan M (1973) The structure of fish gills in relation to their respiratory function. Biol Rev 48:419–475

    Article  Google Scholar 

  • Hughes GM, Roberts JL (1970) A study of the effect of temperature changes on the respiratory pumps of the rainbow trout. J Exp Biol 52:177–192

    Google Scholar 

  • Hughes GM, Umezawa SI (1968) On respiration in the dragonet, Callionomus lyra. J Exp Biol 49:565–582

    PubMed  CAS  Google Scholar 

  • Krogh A (1919) The rate of diffiision of gases through animal tissues, with some remarks on the coefficient of invasion. J Physiol (Lond) 52:391–608

    CAS  Google Scholar 

  • Krogh A (1920) Studien über Tracheenrespiration. 2. Über Gasdiffusion in den Tracheen. Pflügers Arch 179:95–112

    Article  CAS  Google Scholar 

  • Krogh A (1941) The Comparative Physiology of Respiratory Mechanisms. Univ of Pennsylvania Press, Philadelphia. Repr 1968 by Dover Publications, New York

    Google Scholar 

  • Laybourne RC (1974) Collision between a vulture and an aircraft at an altitude of 37000 feet. Wilson Bull 86:461–462

    Google Scholar 

  • Levy RI, Schneidermann HA (1966) Discontinuous respiration in insects. IV Changes in intratracheal pressure during the respiratory cycle of silkworm pupae. J Insect Physiol 12:465–492

    Article  PubMed  CAS  Google Scholar 

  • Massaro GD, Massaro D (1996) Formation of pulmonary alveoli and gas-exchage surface area: quantitation and regulation. Ann Rev Physiol 58:73–92

    Article  CAS  Google Scholar 

  • McArthur MD, Milson WK (1991) Changes in Ventilation and respiratory sensitivity associated with hibernation in Columbian (Spermophilus columbianus) and golden-mantled (Spermophilus lateralis) ground squirrels. Physiol Zool 64:921–939

    Google Scholar 

  • McMahon TA, Wilkens JL (1983) Ventilation, perfusion and oxygen uptake. In: Mantel L (ed) The biology of crustacea. Vol 5:289–372. Academic Press, New York

    Google Scholar 

  • Messner R (1980) Everest. Expedition zum Endpunkt. Droemer Knaur, München, p 200

    Google Scholar 

  • Milsom WK, Brill RW (1986) Oxygen sensitive afferent Information arising from the first gill arch of yellowfm tuna. Respir Physiol 66:193–203

    Article  PubMed  CAS  Google Scholar 

  • Nonotte G (1981) Cutaneous respiration in six freshwater teleosts. Comp Biochem Physiol 70:541–543

    Article  Google Scholar 

  • Peters F (1938) Über die Regulation der Atembewegungen des Flußkrebses Astacus fluviatilis. Z vergl Phys 25:591–611

    CAS  Google Scholar 

  • Perry SF (1990) Recent advances and trends in the comparative morphometry of vertebrate gas exchange Organs. In: Boutilier RG (ed) Advances in comparative and environmental physiology, vol 6. Springer, Berlin Heidelberg New York Tokyo, pp 45–71

    Google Scholar 

  • Piiper J, Scheid P (1992) Modelling of gas exchange in vertebrate lungs, gills and skin. In: Wood SC, Weber RE, Hargens AR, Miliard RW (eds) Physiological adaptations in vertebrates: respiration, circulation, and metabolism. Marcel Dekker, New York, pp 69–96

    Google Scholar 

  • Randall DI (1968) Fish physiology. Am Zool 8:179–189

    PubMed  CAS  Google Scholar 

  • Reiswig HM (1971) In situ pumping activities of tropical Demospongiae. Mar Biol 9:38–50

    Article  Google Scholar 

  • Richards OW, Davies RG (1977) Imm’s general textbook of entomology. Chapmann & Hall, London

    Book  Google Scholar 

  • Roberts IL (1975) Respiratory adaptations of aquatic animals. In: Vernberg FJ (ed) Physiological adaptions to the environment. Intext Educational Publ, New York 1975, pp 395–414

    Google Scholar 

  • Scheid P (1982) A model for comparing gas-exchange Systems in vertebrates. In: Taylor CR et al (eds) A companion to animal physiology, Cambridge Univ Press, Cambridge, pp 17–30

    Google Scholar 

  • Scheid P, Shams H, Piiper J (1989) Gasaustausch bei Wirbeltieren. Verh Dtsch Zool Ges 82:57–68

    Google Scholar 

  • Seymour RS (1974) How sea snakes may avoid the bends. Nature 250:489–490

    Article  PubMed  CAS  Google Scholar 

  • Sibley RM, Simkiss K (1987) Gas diffusion through non-tubular pores. J Exp Zool Suppl 1:187–191

    Google Scholar 

  • Schmidt RF, Thews G (1995) Physiologie des Menschen. 26te Auflage, Springer, Berlin Heidelberg

    Google Scholar 

  • Schmidt-Nielsen K (1972) How animals work. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Schmidt-Nielsen K (1975) Animal Physiology. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Stride GO (1955) On the respiration of an aquatic African beetle, Potamodytes tuberosus HINTON. Ann Ent Soc Am 48:344–351

    Google Scholar 

  • Sundin LI, Reid SG, Kalinin AL, Rantin FT, Milsom WK (1999) Cardiovascular and respiratory reflexes: the tropical fish, traira (Hoplias malabaricus) 02 chemoresponses. Resp Physiol 116:181–199

    Article  CAS  Google Scholar 

  • Taylor EW, Jordan D, Coote JH (1999) Central Control of the cardiovascular and respiratory Systems and their in-teractions in vertebrates. Physiol Rev 79:855–916

    PubMed  CAS  Google Scholar 

  • Thomas HJ (1954) Oxygen uptake of Homarus. J Exp Biol 31:228–251

    CAS  Google Scholar 

  • Thorpe WH, Crisp DJ (1947) Studies on plastron respiration. The biology of Aphelocheirus (Hemiptera, Aphelo-cheiridae (Naucoridae)) and the mechanism of plastron retention. J exp Biol 24: 227–269

    PubMed  CAS  Google Scholar 

  • Visschedijk AHJ, Rahn H (1983) Replacement of diffusive by convective gas transport in the developing hens egg. Respir Physiol 52:137–147

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1923) Versuche an überlebendem Carcinomgewebe (Methoden). Biochem. Z 142:317–333

    CAS  Google Scholar 

  • Waterman AJ et al. (1971) Chordate structure and function. Macmillan, New York

    Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Springer, Berlin Heidelberg

    Google Scholar 

  • West NH, lones DR (1975) Breathing movements in the frog Rana pipiens. II. The power Output and efficiency of breathing. Can J Zool 53:3345–3353

    Google Scholar 

  • Whitemore CM, Warden CE, Doudoroff P (1960) Behaviour of fish in an oxygen gradient. Trans Am Fish Soc 89:17–26

    Article  Google Scholar 

  • Wigglesworth VB (1955) Physiologie der Insekten. Birkhäuser, Basel

    Google Scholar 

  • Withers P (1992) Comparative animal physiology. Saunders College Publ, Fort Worth

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heldmaier, G., Neuweiler, G. (2004). Atmung. In: Vergleichende Tierphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18950-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18950-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62374-5

  • Online ISBN: 978-3-642-18950-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics