Skip to main content

Part of the book series: Springer-Lehrbuch ((SLB))

  • 1741 Accesses

Zusammenfassung

Zahlreiche Prozesse in der Biologie beruhen auf regelmäßig wiederkehrenden Ereignissen, die als biologische Rhythmen bezeichnet werden. Ihre Periodendauer reicht von Millisekunden bei Nervenimpulsen bis zu mehreren Jahren bei den Populationszyklen von Säugetieren (Abb. 10.1). Die periodischen Änderungen des Membranpotentials von Nervenzellen bilden die Grundlage der Erregungsleitung im Nervensystem. Mit der Frequenz der Impulse wird zusätzlich noch die Information digital codiert und verarbeitet. Ventilation und Herztätigkeit haben Periodendauern im Bereich von Sekunden und beruhen auf periodischen Muskelkontraktionen. In diesem Fall sind es Pumpvorgänge, die für die Versorgung des Körpers unerlässlich sind und ein ganzes Leben lang fehlerfrei rhythmisch funktionieren müssen. Die Sekretion vieler Hormone erfolgt periodisch in Schüben, deren Dauer zwischen mehreren Minuten und Stunden schwankt. Bei den Hypophysenhormonen werden die Schübe durch negative Rückkoppelung beeinflusst; auf diese Weise ist die rhythmische Sekretion ein einfacher Weg zur Dosierungskontrolle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Armstrong SM, Cassone VM, Chesworth MJ, Redman JR, Short RV (1986) Synchronization of mammalian circadian rhythms by melatonin. J Neural Transm Suppl 21:375–394

    PubMed  CAS  Google Scholar 

  • Aschoff J (1964) Die Tagesperiodik licht-und dunkelaktiver Tiere. Rev Suisse Zool 71:528–558

    Google Scholar 

  • Aschoff J (1967) Adaptive cycles: their significance for defining environmental hazards. Int J Biometereol 11:255–278

    Article  Google Scholar 

  • Aschoff J (1981a) A survey on biological rhythms. In: Aschoff J (ed) Biological rhythms. Handbook of behavioural neurobiology, vol 4. Plenum, New York, pp 3–10

    Google Scholar 

  • Aschoff J (1981b) Freerunning and entrained circadian rhythms. In: Aschoff J (ed) Biological rhythms. Handbook of behavioural neurobiology, vol 4. Plenum, New York, pp 81–94

    Google Scholar 

  • Aschoff J, Daan S, Honma KI (1981) Zeitgebers, entrainment, and masking: some unsettled questions. In: Aschoff J, Daan S, Groos GA (eds) Vertebrate circadian Systems. Springer, Heidelberg, pp 13–24

    Google Scholar 

  • Aschoff J, Giedke H, Pöppel E, Wever R (1972) The influence of sleep interruption and of sleep deprivation on circadian rhythms in human Performance. In: Colquhoun WP (ed) Aspects of human efficiency. The English Univ Press, London, pp 135–150

    Google Scholar 

  • Aschoff J, Tokura H (1987) Circadian activity rhythms in squirrel monkeys: entrainment by temperature cycles. Biol Rhythms 1:91–99

    Article  Google Scholar 

  • Beaver LM, Gvakharia BO, Vollintin TS, Hege DM, Stanewsky R, Giebultowicz JM (2002) Loss of circadian clock function decreases reproductive fitness in male Drosophila melanogaster. Proc Nat Acad Sei 99:2134–2139

    Article  CAS  Google Scholar 

  • Berson DM, Dünn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  PubMed  CAS  Google Scholar 

  • Borbely A (1984) Das Geheimnis des Schlafs. Deutsche Verlagsanstalt, Stuttgart

    Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibier U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583

    Article  PubMed  CAS  Google Scholar 

  • Berthold P, Gwinner E, Klein H (1972) Circannuale Periodik bei Grasmücken: I. Periodik des Körpergewichts, der Mauser und der Nachtunruhe bei Sylvia atricapilla und S. borin unter verschiedenen konstanten Bedingungen. J Ornithol 113:170–190

    Article  Google Scholar 

  • Bünning E (1973) The physiological clock. Circadian rhythms and biological chronometry. Springer, Heidelberg

    Google Scholar 

  • Campbell SS, Tobler I (1984) Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev 8:269–300

    Article  PubMed  CAS  Google Scholar 

  • Crowcroft P (1954) The daily cycle of activity in British shrews. Proc Zool Soc London 123:715–729

    Article  Google Scholar 

  • Daan S (1981) Adaptive daily strategies in behaviour. In: Aschoff J (ed) Biological rhythms. Handbook of behavioural neurobiology. Vol 4. Plenum, New York, pp 275–298

    Google Scholar 

  • Devlin PF, Kay SA (2001) Circadian photoreception. Ann Rev Physiol 63:677–694

    Article  CAS  Google Scholar 

  • Eskin A (1971) Properties of the Aplysia Visual System: in vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Z vergl Phys 74:353–371

    Article  Google Scholar 

  • Elliot JA (1976) Circadian rhythms and photoperiodic time measurement in mammals. Fed Proc 35:2339–2346

    Google Scholar 

  • Foster RG, Hankins MW (2002) Non-rod, non-cone photoreception in vertebrates. Prog Ret Eye Res 21:507–527

    Article  Google Scholar 

  • Francis AJ, Coleman GJ (1988) The effect of ambient temperature cycles upon circadian running and drinking activity in male and female laboratory rats. Physiol Behav 43:471–477

    Article  PubMed  CAS  Google Scholar 

  • Francis C, Sargent ML (1979) Effects of temperature perturbations on circadian conidiation in Neurospora. Plant Physiol 64:1000–1009

    Article  PubMed  CAS  Google Scholar 

  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD (1998) Role of the CLOCK protein in the mammalian circadian mechanisms. Science 280:1564–1569

    Article  PubMed  CAS  Google Scholar 

  • Gwinner E (1986) Circannual Rhythms. In Farner DS (ed) Zoophysiology, vol 18. Springer, Heidelberg

    Google Scholar 

  • Gwinner E (1977) Photoperiodic Synchronisation of circannual rhythms in the European starling. Naturwissenschaften 64:44

    Article  PubMed  CAS  Google Scholar 

  • Gwinner E, Subbaraj R, Bluhm CK, Gerkema M (1987) Diferential effects of pinealectomy on circadian rhythms of feeding and perch hopping. J Biol Rhythms 2:109–120

    Article  PubMed  CAS  Google Scholar 

  • Hattar S, Liao H-W, Takao M, Berson DM, Yau K-W (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Heigl S, Gwinner E (1995) Synchronisation of circadian rhythms of house sparrows by oral melatonin: effects of changing period. J Biol Rhythms 10:225–233

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Klingenspor M (2002) Role of photoperiod during seasonal acclimation in winter-active small mammals. In: Heldmaier G, Werner D (eds) Environmental signal processing and adaptation. Springer, Heidelberg, pp 233–250

    Chapter  Google Scholar 

  • Heldmaier G, Lynch GR (1986) Pineal involvement in thermo-regulation and acclimatization. Pineal Res Rev 4:97–139

    CAS  Google Scholar 

  • Helfrich-Förster C (1995) The period clock gene is expressed in central nervous System neurons which also produce a neuropeptide that reveals the projection of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc Natl Acad Sei USA 92:612–616

    Article  Google Scholar 

  • Hoffmann K (1979) Photoperiodic effects in the Djungarian hamster: One minute of light during darktime mimics influence of long photoperiods on testicular regrudescence, body weight and pelage colour. Experientia 31:122–123

    Article  Google Scholar 

  • Honma K, Honma S, Hiroshige T (1985) Response curve, free-runnung period, and activity time in circadian loco-motor activity rhythms of rats. Jap J Physiol 35:643–658

    Article  CAS  Google Scholar 

  • Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K-I (2002) Decl and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–844

    Article  PubMed  CAS  Google Scholar 

  • Jacklet JW (1969) circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science 164:562–563

    Article  PubMed  CAS  Google Scholar 

  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M (1997) Positional cloning of the mouse circadian Clock gene. Cell 89:641–653

    Article  PubMed  CAS  Google Scholar 

  • Klein DC, Moore RY, Reppert SM (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford Univ Press, Oxford

    Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sei USA 68:2112–2116

    Article  CAS  Google Scholar 

  • Menaker M, Zimmerman N (1976) Role of the pineal in the circadian system of birds. Amer Zool 16:45–55

    CAS  Google Scholar 

  • Menaker M, Underwood H (1976) Extraretinal photoreception in birds. Photochem Photobiol 23:299–306

    Article  CAS  Google Scholar 

  • Moore-Ede MC, Sulzman FM (1981) Internal temporal Order. In: Aschoff J (ed) Biological rhythms. Handbook of behavioural neurobiology, vol 4. Plenum, New York, pp 215–241

    Google Scholar 

  • Mrosovsky N (1977) Circannual cyles in hibernators. In: Wang L, Hudson JW (eds) Strategies in Cold. Natural torpidity and thermogenesis. Academic Press, New York, pp 21–65

    Google Scholar 

  • Mukhametov LM, Supin AY, Polyakova IG (1977) Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Rex 134:581–584

    Article  CAS  Google Scholar 

  • Neumann D (1982) Tidal and lunar rhythms. In: Aschoff J (ed) Biological rhythms. Handbook of behavioural neurobiology, vol 4. Plenum, New York, pp 3–10

    Google Scholar 

  • Nisimura T, Numata H (2001) Endogenous timing mechanism Controlling the circannual pupation mechanism of the varied carpet beetle Anthrenus verbasci. J Comp Physiol A 187:433–440

    Article  PubMed  CAS  Google Scholar 

  • Page TL (1982) Neural and endoerine control of circadian rhythmicity in invertebrates. In: Aschoff J (ed) Biological rhythms. Handbook of behavioural neurobiology vol 4. Plenum, New York, pp 145–172

    Google Scholar 

  • Panda S, Hogenesch JB, Kay SA (2002) Circadian rhythms from flies to humans. Nature 417:329–335

    Article  PubMed  CAS  Google Scholar 

  • Pengelley ET, Asmundson SJ, Barnes B, Aloia RC (1976) Relationship of light intensity and photoperiod to circannual rhythmicity in the hibernating ground squirrel. Comp Biochem Physiol 53A:273–277

    Article  Google Scholar 

  • Petri B, Stengl M (1997) Pigment-dispersing hormone shifts the phase of the circadian Pacemaker of the cockroach Leucophaea maderae. J Neurosci 17:4087–4094

    PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1967) Circadian Systems. I. The driving os-cillation and its assay in Drosophila pseudoobscura. Proc Natl Acad Sei USA 58:1762–1767

    Article  CAS  Google Scholar 

  • Pittendrigh CS (1981) Freerunning and entrained circadian rhythms. In: Aschoff J (ed) Biological rhythms. Handbook of behavioural neurobiology, vol 4. Plenum, New York, pp 95–124

    Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, Hall JC, Rosbash M (1984) Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38:701–710

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1993) The Melatonin rhythm: both a clock and a calendar. Experientia 49:654–664

    Article  PubMed  CAS  Google Scholar 

  • Rattenborg NC, Amlaner CJ, Lima SL (2000) Behavioural, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev 24:817–842

    Article  PubMed  CAS  Google Scholar 

  • Rechtschaffen A (1998) Current perspectives on the funetion of sleep. Perspect Biol Med 41:359–390

    PubMed  CAS  Google Scholar 

  • Renn SCP, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioural circadian rhythms in Drosophila. Cell 99:791–802

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver D (2001) Molecular analysis of mammalian circadian rhythms. Ann Rev Physiol 63:647–676

    Article  CAS  Google Scholar 

  • Ruf T, Steinlechner S, Heldmaier G (1989) Rhythmicity of body temperature and torpor in the Djungarian hamster, Phodopus sungorus. In: Malan A, Canguilhem B (eds) Living in the cold II. John Libbey Eurotext, pp 53–61

    Google Scholar 

  • Stanewsky R (2002) Clock mechanisms in Drosophila. Cell TissueRes 309:11–26

    Article  CAS  Google Scholar 

  • Stanewsky R (2003) Genetic analysis of the circadian System in Drosophila melanogaster and mammals. J Neurobiol 54:111–147

    Article  PubMed  CAS  Google Scholar 

  • Steinlechner S, Puchalski W (2002) Mechanisms for seasonal control of reproduetion in small mammals. In: Heldmaier G, Werner D (eds) Environmental signal processing and adaptation. Springer, Heidelberg, pp 233–250

    Google Scholar 

  • Tosini G, Menaker M (1998) Multioscillatory circadian Organisation in a vertebrate, Iguana iguana. J Neurosci 18:105–1114

    Google Scholar 

  • Underwood H, Menaker M (1976) Extraretinal photoreeeption in birds. Photochem Photobiol 23:299–306

    Article  Google Scholar 

  • Underwood H, Calaban M (1987) Pineal melatonin rhythms in the lizard Anolis carolinensis: I. Response to light and temperature cycles. J Biol Rhythms 2:179–193

    Article  PubMed  CAS  Google Scholar 

  • van der Horst GTJ, Muijtiens M, Kobayashi K, Takano R, Kanno SI (1999) Mammalian Cryl and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630

    Article  PubMed  Google Scholar 

  • Williams JA, Sehgal A (2001) Molecular components of the circadian System in Drosophila. Ann Rev Physiol 63:729–755

    Article  CAS  Google Scholar 

  • Winfree AT (1986) Biologische Uhren. Zeitstrukturen des Lebendigen. Spektrum, Heidelberg

    Google Scholar 

  • Wollnik F (1995) Die innere Uhr der Säugetiere. BIUZ 25:37–43

    Article  CAS  Google Scholar 

  • Yagita K, Tamanini F, van der Horst GTJ, Okamura H (2001) Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292:278–281

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman WF, Pittendrigh CS, Pavlidis T (1968) Temperature compensation of the circadian oscillation in Drosophila pseudoobscura and its entrainment by temperature cycles. J Insect Physiol 14:669–684

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heldmaier, G., Neuweiler, G. (2004). Biologische Rhythmen. In: Vergleichende Tierphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18950-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18950-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62374-5

  • Online ISBN: 978-3-642-18950-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics