Skip to main content

Bioenergetik

  • Chapter
  • 1759 Accesses

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Robert Julius Mayer, 1814 in Heilbronn geboren, studierte Medizin und wurde Schiffsarzt auf einem Kauffahrt-Schiff, dessen Route von Rotterdam nach Indonesien und zurück führte. Er machte sich viele Gedanken über die Wirkung von Wärme auf den Körper. In einem Brief vom 24.7.1841 schrieb er: „Wenn Bewegung abnimmt und aufhört, so bildet sich immer ein dem verschwindenden Bewegungs-Quantum genau entsprechendes Quantum von Kraft mit anderer Qualität, namentlich also Wärme“. Dies ist die Rohfassung dessen, was wir heute als Prinzip von der Erhaltung der Energie oder den Ersten Hauptsatz der Thermodynamik bezeichnen. In der Biologie bedeutet dieser Satz, dass Energie weder erzeugt noch vernichtet, sondern nur im Körper umgesetzt wird und dabei ihre Form ändert: als Wärme, Bewegung, chemische Verbindung oder elektrische Ladung.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aebi H (1967) Kinetik. In: Biochemisches Taschenbuch. Springer, Berlin Heidelberg New York, S 159–192

    Google Scholar 

  • Aschoff J, Kramer K (1971) Energiestoffwechsel. In: Gauer OHG, Kramer K, Jung R (Hrsg) Physiologie des Menschen. Band 2: Energiehaushalt und Temperaturregulation. Urban & Schwarzenberg, München

    Google Scholar 

  • Aschoff J, Pohl H (1970) Der Ruheumsatz von Vögeln als Funktion der Tageszeit und der Körpergröße. J Ornithol 3:38–48

    Article  Google Scholar 

  • Bairlein F, Gwinner E (1994) Nutritional mechanisms and temporal control of migratory energy accumulation in birds. Ann Rev Nutr 14:187–215

    Article  CAS  Google Scholar 

  • Bartholomew GA, Casey TM (1977) Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. J Therm Biol 2:173–176

    Article  Google Scholar 

  • Bartholomew GA, Casey TM (1978) Oxygen consumption of moths during rest, pre-fleight warm-up, and flight in relation to body size and wing morphology. J Exp Biol 76:11–25

    Google Scholar 

  • Baudinette RV, Nagle KA, Scott RAD (1976) Locomotory energetics in dasyurid marsupials. J Comp Physiol 109:159–168

    Google Scholar 

  • Berger M (1984) Sauerstoffverbrauch von Kolibris (Colibri coruscans und C. thalassinus) beim Horizontalflug. In: Nachtigall W (Hrsg) Biona Report 3. Bird Flight. Fischer, Stuttgart 1984, S 307–314

    Google Scholar 

  • Berthold P (1996) Control of bird migration. Chapman & Hall, London

    Google Scholar 

  • Biebach H (1992) Flight-range estimates for small trans-Sahara migrants. Ibis 134,Suppl 1:47–54

    Google Scholar 

  • Bishop CM (1999) The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter. Proc R Soc Lond B 266:2275–2281

    Article  CAS  Google Scholar 

  • Brand MD, Couture P, Else PL, Wither KW, Hulbert AJ (1991) Evolution of energy metabolism: proton permeability of the inner membrane of liver mitochondria is greater in a mammal than a reptile. Biochem J 275:81–86

    PubMed  CAS  Google Scholar 

  • Brand MD, Chien LF, Ainscow EK, Rolfe DFS, Porter RK (1994) The causes and functions of mitochondrial proton leaks. BBA 1187:132–139

    Article  PubMed  CAS  Google Scholar 

  • Bouillaud F, Couplan E, Pecqueur C, Ricquier D (2001) Homologues of the uncoupling protein from brown adipose tissue (UCP1): UCP2, UCP2, BMCP1 and UCP4. BBA 1504:107–119

    Article  PubMed  CAS  Google Scholar 

  • Brody S (1945) Bioenergetics and growth. Reinhold, New York

    Google Scholar 

  • Buck LT (2000) Succinate and alanine as aerobic end-products in the diving turtle. Comp Biochem Physiol B 126:409–413

    Article  PubMed  CAS  Google Scholar 

  • Crocker CE, Ultsch GR, Jackson DC (1999) The physiology of diving in a north-temperate and three tropical turtle species. J Comp Physiol 169:249–255

    CAS  Google Scholar 

  • Daan S, Masman D, Groenewold A (1989) Avian basal metabolic rates: Their association with body composition and energy expenditure in nature. Am J Physiol 259:R333–R340

    Google Scholar 

  • Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Science 417:166–170

    CAS  Google Scholar 

  • Dausmann KH, Ganzhorn JU, Heldmaier G (2000) Body temperature and metabolic rate of a hibernating primate in Madagascar: Preliminary results from a field study. In: Heldmaier G, Klingenspor M (eds) Life in the cold. Proceedings of the 11th hibernation symposium. Springer, Berlin Heidelberg New York Tokyo, pp 41–48

    Google Scholar 

  • Dawson TJ, Taylor CR (1973) Energetic cost of locomotion in kangaroos. Nature 246:313–314

    Article  Google Scholar 

  • Degen AA (1997) Ecophysiology of small desert mammals. In Cloudsley-Thompson LL (ed) Adaptations of Desert Organisms. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • de Zwaan A (1983) Carbohydrate metabolism in bivalves. In: Hochachka P (ed) The mollusca. Vol 1. Metabolic biochemistry and molecular biomechanics. Academic Press, New York, pp 138–176

    Google Scholar 

  • Eckhardt KU (1994) Erythropoietin: Oxygen-dependent control of erythropoiesis and its failure in renal desease. Nephron 67:7–23

    Article  Google Scholar 

  • Elgar MA, Harvey PH (1987) Basal metabolic rates in mammals: allometry, phylogeny and ecology. Funct Ecol 1:25–36

    Article  Google Scholar 

  • Else PL, Hulbert AJ (1981) Comparison of the „mammal machine“ and the „reptile machine“: energy production. Am J Physiol 240:R3–R9

    PubMed  CAS  Google Scholar 

  • FAO/WHO (1973) Joint Expert Committee on energy and Protein Requirements. Wld Hlth Org techn Rep Ser No 522

    Google Scholar 

  • Feldman HA, McMahon TA (1983) The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respirat Physiol 52:149–163

    Article  CAS  Google Scholar 

  • Firth JD, Ebert BL, Pugh CW, Ratcliff PJ (1994) Oxygen-related control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: Similarities with the erythropoietin 3′ enhancer. Proc Natl Acad Sci USA 91:6496–6500

    Article  PubMed  CAS  Google Scholar 

  • Gnaiger E (1977) Thermodynamic considerations of invertebrate anoxibiosis. In: Lamprecht I, Schaarschmidt B (eds) Applications of calorimetry in life sciences. de Gruyter, Berlin, pp 281–303

    Google Scholar 

  • Gnaiger E (1983) Heat dissipation and energetic efficiency in animal anoxibiosis: Economy versus power. J exp Zool 228:471–490

    Article  CAS  Google Scholar 

  • Grodzinski W, Wunder BA (1976) Ecological energetics of small mammals. In: Golley FB, Petrusewicz K, Ryszkowski L (eds) Small mammals: Their productivity and population dynamics. International Biological Program 5. Cambridge Univ Press, pp 173–204

    Google Scholar 

  • Grodzinsky W, Böckler H, Heldmaier G (1988) Basal and cold-induced metabolic rates in the Harvest mouse, Micromys minutus. Acta Theriol 33:293–291

    Google Scholar 

  • Guppy M, Hulbert WC, Hochachka PW (1979) Metabolic sources of heat and power in tuna muscles. J exp Biol 82:303–320

    PubMed  CAS  Google Scholar 

  • Hammond KA, Diamond J (1997) Maximal sustained energy budgets in humans and animals. Science 386:457–462

    CAS  Google Scholar 

  • Hand SC, Hardewig I (1996) Downregulation of cellular metabolism during environmental stress — mechanisms and implications. Ann Rev Physiol 58:539–563

    Article  CAS  Google Scholar 

  • Hart JS (1971) Rodents. In: Whittow GC (ed) Comparative physiology of thermoregulation. Vol II. Mammals. Academic Press, pp 1–149

    Google Scholar 

  • Hayssen V, Lacy RC (1985) Basal metabolic rates in mammals: Taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol 81A:741–754

    Article  Google Scholar 

  • Heldmaier G, Ortmann S, Körtner G (1993) Energy requirements of hibernating Alpine marmots. In: Carey C, Florant GL, Wunder BA, Horwitz B (eds) Life in the cold: ecological, physiological and molecular mechanisms. Westview, Boulder, pp 175–183

    Google Scholar 

  • Heldmaier G, Steinlechner S (1981) Seasonal control of energy requirements for thermoregulation in the Djungarian hamster (Phodopus sungorus) living in a natural photoperiod. J Comp Physiol 142:429–437

    Google Scholar 

  • Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep Steno Memorial Hosp Nord Insulinlab 9:1–110

    Google Scholar 

  • Herreid CF, Kessel B (1967) Thermal conductance in birds and mammals. Comp Biochem Physiol 21:405–414

    Article  PubMed  Google Scholar 

  • Heusner AA (1982) Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleibers equation a statistical artifact? Respir Physiol 48:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hillman SS, Withers PC (1979) An analysis of respiratory surface area as a limit to activity metabolism in anurans. Can J Zool 57:2100–2105

    Article  PubMed  CAS  Google Scholar 

  • Hoffman L, Schiemann R (1973) Die Verwertung der Futterenergie durch die legende Henne. Arch Tierernährung 23:105–132

    Article  Google Scholar 

  • Hochachka PW (1980) Living without oxygen. Harvard Univ Press, Cambridge/MA

    Google Scholar 

  • Hochachka PW (2000) Pinniped diving response mechanism and evolution: A window on the paradigm of comparative biochemistry and physiology. Comp Biochem Physiol A 126:435–458

    CAS  Google Scholar 

  • Hochachka PW, Guppy M, Guderley HE, Storey KB, Hulbert WC (1978) Metabolic biochemistry of water versus air-breathing fishes: Muscle enzymes and ultrastructure. J Zool 56:736–750

    CAS  Google Scholar 

  • Hochachka PW, Somero GN (1980) Strategien biochemischer Anpassung. Thieme, Stuttgart

    Google Scholar 

  • Holpainen IJ, Hyvarinen H, Piironen J (1986) Anaerobic wintering of crucian carp (Carassius auratus L.) II. Metabolic products. Comp Biochem Physiol A 1983:239–242

    Article  Google Scholar 

  • Humphreys WF (1979) Production and respiration in animal populations. J Anim Ecol 48:427–453

    Article  Google Scholar 

  • Jackson DC (1968) Metabolic depression and oxygen depletion in the diving turtle. J Appl Physiol 24:503–509

    PubMed  CAS  Google Scholar 

  • Jobling M, Davis PS (1980) Effects of feeding on metabolic rate and the specific dynamic action in plaice, Pleuronectes platessa. J Fish Biol 16:629–638

    Article  Google Scholar 

  • Jorgensen PL, Pedersen PA (2001) Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na, K-ATPase. Biochim Biophys Acta 1505:57–74

    Article  PubMed  CAS  Google Scholar 

  • Kellner O (1919) Die Ernährung der landwirtschaftlichen Nutztiere. Paul Parey, Berlin

    Google Scholar 

  • Kiorboe T, Mohlenberg F (1987) Partitioning of oxygen consumption between maintenance and growth in developing herring Clupea harengus (L.) embryos. J Exp Mar Biol Ecol 111:99–108

    Article  Google Scholar 

  • Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  • Kleiber M (1967) Der Energiehaushalt von Mensch und Haustier. Paul Parey, Hamburg

    Google Scholar 

  • Klingenberg M, Echtay KS (2001) Uncoupling proteins: the issues from a biochemist point of view. BBA 1504:128–143

    Article  PubMed  CAS  Google Scholar 

  • Koteja P (1987) On the relation between basal and maximum metabolic rate in mammals. Comp Biochem Physiol 87A:205–208

    Article  Google Scholar 

  • Kozlowski J, Weiner J (1997) Interspecific allometries are by-products of body size optimisation. Am Nat 149:352–380

    Article  Google Scholar 

  • Land SC, Hochachka PW (1995) Protein turnover during metabolic arrest in turtle hepatocytes: role and energy dependence of proteolysis. Am J Physiol 266:C1028–C1036

    Google Scholar 

  • Le Maho Y (1977) The Emperor penguin: A strategy to live and breed in the cold. Amer Sci 65:680–693

    Google Scholar 

  • Lipman F (1941) Metabolic generation of phosphate bond energy. Advan Enzymol Rel Areas Mol Biol 1:99–162

    Google Scholar 

  • Löffler G, Petrides PE (1997) Biochemie und Pathobiochemie. 5. Aufl. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Margaria R (1976) Biomechaniscs and energetics of muscular exercise. Clarendon Press, Oxford

    Google Scholar 

  • Margulis L (1975) Symbiontic theory for the origin of the eukarytic organelles: Criteria for proof. Symp Exp Biol 29:21–37

    Google Scholar 

  • Mathieu O, Krauer R, Hoppeler H, Gehr P, Lindstedt SL, Alexander RM, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. VII. Scaling mitochondrial volumes in skeletal muscle to body mass. Respir Physiol 44:13–126

    Article  Google Scholar 

  • McMahon T (1973) Size and shape in biology. Science 179:1201–1204

    Article  PubMed  CAS  Google Scholar 

  • Mount LE (1968) The climatic physiology of the pig. Edward Arnold, London

    Google Scholar 

  • Neumann RL, Cade TJ (1965) Torpidity in the Mexican ground squirrel Citellus mexicans parvidens. Can J Zool 43:33–140

    Article  Google Scholar 

  • Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press, London

    Google Scholar 

  • Ortmann S, Heldmaier G (2000) Regulation of body temperature and energy requirements of hibernating Alpine marmots. Am J Physiol 278:R698–R704

    CAS  Google Scholar 

  • Passmore R, Durnin JVGA (1955) Human energy expenditure. Physiol Rev 35:801–840

    PubMed  CAS  Google Scholar 

  • Porter RK (2001) Mitochondrial proton leak: a role for uncoupling proteins 2 and 3? BBA 1504:120–127

    Article  PubMed  CAS  Google Scholar 

  • Porter RK, Brand M (1993) Body mass dependency of H+ leak in mitochondria and its relevance to metabolic rate. Nature 362:628–630

    Article  PubMed  CAS  Google Scholar 

  • Rausch RN, Crawshaw LI, Wallace HL (2000) Effects of hypoxia, anoxia, and endogenous ethanol in thermoregulation in goldfish, Carassius auratus. Am J Physiol 278:R545–R555

    CAS  Google Scholar 

  • Reese SA, Crocker CE, Jackson DC, Ultsch GR (2001) The physiology of hibernation among painted turtles: the midland painted turtle (Chrysemys picta marginata). Respir Physiol 124:43–50

    Article  PubMed  CAS  Google Scholar 

  • Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    PubMed  CAS  Google Scholar 

  • Rolfe DF, Newman JM, Buckingham JA, Clark MG, Brand MD (1999) Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Physiol 276:C692–C699

    PubMed  CAS  Google Scholar 

  • Rubner M (1883) Über den Einfluß der Körpergröße auf den Stoff-und Kraftwechsel. Z Biol 19:535–562

    Google Scholar 

  • Rubner M (1902) Die Gesetze des Energieverbrauchs bei der Ernährung. Deuticke, Leipzig

    Google Scholar 

  • Seeherman HJ, Dmi’el R, Gleeson TT (1983) Oxygen consumption and lactate production in varanid and iguanid lizards: A mammalian relationship. In: Knuttgen HG, Vogel JA, Poortmans J (eds) Biochemistry of Exercise, Int Ser Sport Sci 13, Kinetics, Champaign, pp 421–427

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling. Why is animal size so important. Cambridge Univ Press

    Google Scholar 

  • Schmidt-Nielsen K, Pennycuik P (1961) Capillary density in mammals in relation to body size and oxygen consumption. Am J Physiol 200:746–750

    PubMed  CAS  Google Scholar 

  • Shoubridge EA, Hochachka PW (1980) Ethanol: novel end product of vertebrate anaerobic metabolism. Science 209:308–309

    Article  PubMed  CAS  Google Scholar 

  • Stryer L (1996) Biochemie. 4. Aufl. Spektrum, Heidelberg

    Google Scholar 

  • Taylor CR, Schmidt-Nielsen K, Raab JL (1970) Scaling of the energetic cost of running to body size in mammals. Am J Physiol 219:1104–1107

    PubMed  CAS  Google Scholar 

  • Taylor RC, Maloiy GMO, Weibel ER, Langman VA, Kamau JMZ, Seeherman HJ, Heglund NC (1980) Design of the mammalian respiratory system. III. Scaling maximum aerobic capacity to body mass: wild and domestic animals. Resp Physiol 44:25–37

    Article  Google Scholar 

  • Tucker VA (1968) Respiratory exchange and evaporative water loss in the flying budgeriar. J Exp Biol 48:67–87

    Google Scholar 

  • Tucker VA (1975) The energetic cost of moving about. Am Sci 63:413–419

    PubMed  CAS  Google Scholar 

  • Webster KA, Discher DJ, Hernandez OM, Yamashita K, Bishopric NH (2000) A glycolytic pathway to apoptosis of hypoxic cardiac myocytes. In: Lahiri S, Prabhakar NR, Forster RE (eds) Oxygen sensing — molecules to man. Kluwer Academic / Plenum. New York, pp 161–178

    Google Scholar 

  • Weiner J (1977) Energy metabolism of the roe deer. Acta Theriol 22:3–24

    Google Scholar 

  • Wenger RH, Gassman M (1997) Oxygen(es) and the hypoxia inducible factor 1. Biol Chem 378:609–616

    PubMed  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • Wieser W (1986) Bioenergetik. Energietransformation bei Organismen. Thieme, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heldmaier, G., Neuweiler, G. (2004). Bioenergetik. In: Vergleichende Tierphysiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18950-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18950-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62374-5

  • Online ISBN: 978-3-642-18950-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics